
1

Hecl - The Mobile Scripting
Language [http://www.hecl.org/]

David N. Welton, hecl.org <hecl@googlegroups.com>
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 David N. Welton

Table of Contents
Introduction ... 1
Installation / Tools & Editors .. 2

Tools & Editors ... 3
Hecl Tutorial ... 4
Hecl Commands ... 7
Hecl Extension Commands ... 75

File Interaction ... 75
HTTP ... 98
Location .. 103
Net ... 105
RecordStore ... 107
K-XML ... 119

Interfacing Hecl and Java ... 129
Calling Hecl code from Java ... 129
Creating new Hecl commands ... 130
Building Hecl: Ant Targets ... 131
JavaDocs ... 132

Hecl and Java ME ... 132
Hecl Java ME Tutorial ... 132
Quick start to developing Java ME apps .. 140
Hecl J2ME MIDP1.0 Commands ... 140
Hecl Java ME MIDP2.0 Commands ... 159
Hacking Hecl's Java ME code ... 198

Hecl and BlackBerry ... 199
BlackBerry Commands ... 199

Hecl and Android .. 206
Android Hecl Quick Start ... 206

Introduction
The Hecl Programming Language is a high-level scripting language implemented in Java. It is intended
to be small, extensible, extremely flexible, and easy to learn and use.

Why Hecl? Hecl is intended as a complement to the Java programming language, not a replacement.
It tries to do well what Java doesn't, and leaves those tasks to Java for which it is best suited, by
providing an API that makes it easy to tie the two together. Hecl aims to be a very immediate language
- you can pick it up and start doing useful things with it quickly - even people without formal training.
Hecl is easy to learn. Where Java is verbose and rigid, Hecl is forgiving and quick to write. For
instance, System.out.println("Hello World"); vs puts "Hello World" - 41 keystrokes
(shifted letters count double) versus 22. Hecl is built to "scale down" [http://www.welton.it/articles/

http://www.hecl.org/
http://www.hecl.org/
http://www.hecl.org/
http://www.welton.it/articles/scalable_systems.html
http://www.welton.it/articles/scalable_systems.html

Hecl - The Mobile Scripting Language

2

scalable_systems.html] - especially in terms of its users, meaning that it is very quick to learn, and can be
quickly put to productive use even by those who are not programmers by trade.

This makes Hecl ideal for large applications written in Java that would like to provide a user friendly
scripting interface, rather than, say, a clunky XML based system. Examples include: scripted web
pages, command/control logic in long running applications, and, I'm sure, many environments I've never
considered. Instead of a simple, static configuration file, you can give your users the power to program
portions of the system to do things that you hadn't thought of when you wrote the software originally.

Hecl is a small language with a minimal core. The idea is to provide only what's necessary in the language
itself, and as needed, add in extensions for specific tasks. Core Hecl is small enough to run on my Nokia
3100 cell phone as a J2ME application, presenting the interesting possibility of writing scripts, or at some
point, maybe even scripting entire applications, for devices running embedded Java.

Contributions in the form of code, ideas, suggestions, or even donations are welcome. Hecl is still growing,
so your thoughts are important, and you can help shape the language's future. You can download the latest
source code via git [http://git-scm.com/] from github: http://github.com/davidw/hecl/tree/master.

Hecl is available under the liberal Apache 2.0 open source license. Which says, more or less, that you
may use Hecl in your own applications, even if they are not open source. You have to give the authors
credit, though. Read the license itself to clear up any doubts. Incidentally, I don't see the license as being
incompatible with the GPL, so feel free to utilize Hecl in your GPL product (I have added a note to this
effect in the NOTICE file that must accompany products using the Hecl code).

I owe thanks to a lot of people for Hecl. First and foremost the creator of the Tcl programming language,
Dr. John Ousterhout. While I have attempted to improve some things that I did not care for in Tcl, it is
obvious that the simple, extremely flexible command-based approach that Hecl takes is derived from Tcl.
I also borrowed some ideas from the (mostly defunct) Jacl implementation of Tcl in Java. Many thanks
are also due my friend Salvatore Sanfilippo, with whom I have spent many hours discussing Hecl, Tcl,
and the philosophy of programming languages in general. And of course, I owe a huge debt of gratitude
to my wife, Ilenia, who puts up with all the hours I spend in front of "that damn computer".

Installation / Tools & Editors
Hecl is easy to compile and install as a standard J2SE application.

Note

This is only necessary if you'd like to work on Hecl's source code. If all you want to do is use it,
or install it on your mobile phone, these steps aren't necessary - the standard distribution contains
everything you need.

Note

On Microsoft Windows, you must add your java bin directory to the system path, otherwise you
will get strange, seemingly unrelated errors!

1. Dependencies:

You will need to install these software packages if you want to rebuild Hecl.

Obviously, you need a Java SDK - we suggest something recent like 1.5 or 1.6, as that's what most
of the Hecl developers have.
Depending on what you want to utilize Hecl for, you'll want one or both of the Sun Java Wireless
Toolkit [http://java.sun.com/javame/downloads/index.jsp] or Android SDK [http://code.google.com/
android/download.html].

http://www.welton.it/articles/scalable_systems.html
http://git-scm.com/
http://git-scm.com/
http://github.com/davidw/hecl/tree/master
http://java.sun.com/javame/downloads/index.jsp
http://java.sun.com/javame/downloads/index.jsp
http://java.sun.com/javame/downloads/index.jsp
http://code.google.com/android/download.html
http://code.google.com/android/download.html
http://code.google.com/android/download.html

Hecl - The Mobile Scripting Language

3

Hecl uses the Apache Ant [http://ant.apache.org/] build system, so you need to install that as
well to compile Hecl. If you are on Windows, this may require a bit of extra work. Here are
some instructions for setting up Ant on Windows [http://blogs.sun.com/rajeshthekkadath/entry/
installing_ant_on_windows].

2. To compile the standard, J2SE version of Hecl, do this:

ant packageCommandline

3. You should now have a Hecl.jar file in the jars/j2se/ directory. To run it, do this:

java -jar jars/j2se/Hecl.jar
hecl> puts "hello world"
hello world

4. If you want to check your installation of Hecl, you can run the test suite to make sure everything
checks out:

java -jar jars/j2se/Hecl.jar tests/suite.hcl

An (incomplete) performance test is also supplied so that you can compare numbers if you're curious,
or want to hack on Hecl to improve its speed:

java -jar jars/j2se/Hecl.jar tests/performance.hcl

If you're going to be recompiling (you don't need to recompile if you're only going to be writing scripts,
though!) Hecl for Java ME, you also need to follow these instructions.

1. You'll need to download and install Sun's "Java Wireless Toolkit", here: http://java.sun.com/products/
sjwtoolkit/index.jsp.

2. You also need to make Hecl aware of the WTK. For instance, in my installation, the settings.xml
file has the following:

<!-- General WTK settings -->
<!-- make it fit for your local installation -->
<property name="my.wtk.home" value="/opt/WTK2.5.2"/>

You would need to change /opt/WTK25.2 to wherever the WTK is located on your system.

See the section called “Hecl and Java ME” for further information on installation and use with J2ME.

Tools & Editors
Even if you're not interested in recompiling Hecl to hack on the source code, to write Hecl scripts, you need
some kind of editor for programming. Hecl is close enough in syntax to the Tcl programming language
that editors that support Tcl work well with Hecl.

http://ant.apache.org/
http://ant.apache.org/
http://blogs.sun.com/rajeshthekkadath/entry/installing_ant_on_windows
http://blogs.sun.com/rajeshthekkadath/entry/installing_ant_on_windows
http://blogs.sun.com/rajeshthekkadath/entry/installing_ant_on_windows
http://java.sun.com/products/sjwtoolkit/index.jsp
http://java.sun.com/products/sjwtoolkit/index.jsp

Hecl - The Mobile Scripting Language

4

• Emacs' Tcl mode is easy to use: M-x tcl-mode, or if you want to associate .hcl scripts with tcl-
mode, add this to your .emacs file:

(setq auto-mode-alist
 (cons '("\\.hcl$" . tcl-mode)
 auto-mode-alist))

• Eclipse is popular for working on Java projects. It also has a Tcl mode that can be utilized for Hecl
scripts like so:

Editing Hecl scripts with Eclipse

1. Install the DLTK from the following URL: http://download.eclipse.org/technology/dltk/updates,
from within Eclipse.

2. After downloading you must associate the *.hcl files with the Tcl Source Editor.

Windows # Preferences # General # Editors # File Associations

3. Than make a new file type by adding the *.hcl file type, and select the Tcl Source Editor.

Hecl Tutorial
Note

This is a general tutorial on the Hecl language - if you're looking for the tutorial about Hecl on
Java ME, it's here: Java ME Tutorial.

Like many people, I enjoy taking something and experimenting with it before going and reading the
instructions! With this in mind, I have written a brief tutorial that you can use to start exploring Hecl on
your own.

To launch the interactive Hecl shell:

java -jar ./jars/j2se/Hecl.jar

This will give you a prompt: hecl> where you can type in commands.

Of course, we would be out of place not to begin with the famous "Hello, World". Behold:

puts "Hello, World"

Hecl is based on the notion of commands, which take any number of arguments. The puts command takes
one argument, a string, and prints it out.

Like all programming languages, Hecl provides variables that may be used to store information. Here, we
set a variable, rating, and then print it out in the midst of a string. This is called "interpolation", and
is a convenient way of creating new strings.

set rating 10
puts "Hecl, from 1 to 10: $rating"

Something else we notice in the above examples is that we use double quotes "" to group a series of things.
In Hecl, commands and their arguments are separated by spaces. Since puts only takes one argument,

http://download.eclipse.org/technology/dltk/updates

Hecl - The Mobile Scripting Language

5

a string, we use the quotes to group several words together in order to pass them as one string to the
command. Many languages require quotes to delineate a string, but in Hecl that is not necessary if the
string has no spaces in it. For instance, puts helloworld is legitimate.

Something else visible in the above command is that Hecl commands occur one per line, and that no line
ending is necessary, as in languages like C where lines end in a semicolon. In Hecl, the semicolon is
optional, and can be used to put more than one command on a line:

puts "hello" ; puts "world"

Another way of grouping multiple words in Hecl is with braces: {}. Hecl does not automatically perform
any substitution on the variables or commands grouped within braces, as it does with quotes.

puts {The $dollar $signs $are printed literally$$ - no substitution}

Aside from the dollar sign, which returns a reference to the value of a variable, it is also possible to utilize
the results of one command as the input of a second command. For example:

set rating 10
puts "Rating:"
puts [set rating]

In this case, we pass the results of the set command to the puts command. In reality, set rating is
just a long way of writing $rating but it's a good example.

Like everything else in Hecl, we perform math operations as commands:

puts "2 + 2 = [+ 2 2]"

In the example, the + takes two arguments, adds them together and return the result, which is then printed
out by the puts command.

In order to choose between one or more

set temp 10
if { < $temp 0 } {
 puts "It's freezing"
} else {
 puts "Not freezing"
}

"while" loop command:

set i 0
while { < $i 10 } {
 puts "i is now $i"
 incr $i
}

Lists:

set foo [list a b c]
set bar {a b c}
lappend $foo d
lappend $bar d
set foo
Returns 'a b c d'

Hecl - The Mobile Scripting Language

6

set bar
Returns 'a b c d'

Hash tables:

set foo [hash {a b c d}]
puts [hget $foo a]
prints 'b'
puts [hget $foo c]
prints 'd'
hset $foo c 2
puts [hget $foo c]
prints '2'
puts $foo
prints 'a b c 2' (although not necessarily in that order)

"foreach" loop command:

set lst {a b c d e f}
foreach {m n} $lst {
 puts "It is possible to grab two variables at a time: $m $n"
}

foreach {x} $lst {
 puts "Or one at a time: $x"
}

Create new commands with the "proc" command. In this example we create a command that prints out a
numbered list. In Hecl, commands created within procs normally are only visible within that proc, and are
cleaned up when the procedure exits. For exceptions to this rule, see the global and upeval commands.

set list {red blue green}
proc printvals {vals} {
 set num 1
 foreach v $vals {
 puts "$num - $v"
 incr $num
 }
}

printvals $list

Hecl is very flexible - in this example, we create a "do...while" loop command that works as if it were
a native loop construct.

proc do {code while condition} {
 upeval $code
 while { upeval $condition } {
 upeval $code
 }
}

set x 100
set foo ""
do {

Hecl - The Mobile Scripting Language

7

 append $foo $x
 incr $x
} while { < $x 10 }
set foo
Returns 100 - because the loop is run once and only once.

Hecl Commands
These commands are part of the Hecl core and are always present.

Hecl - The Mobile Scripting Language

8

Name
= != — Integer equality

Synopsis
= {num1} {num2} != {num1} {num2}

Description

Tests two numbers for equality, returning 1 if they are, 0 if they aren't equal. In the case of !=, returns 1
if they are not equal, 0 if they are equal.

Example

puts [= 1 1]
puts [= 0 1]
puts [= 00001 1]
puts [!= 1 1]

Produces:

1
0
1
0

Hecl - The Mobile Scripting Language

9

Name
+ - * / — Basic math commands.

Synopsis
+ {number} [number...] - {number} {number} * {number} {number} / {number} {number}

Description

The basic math commands take two arguments and carry out a numerical operation on them. In subtraction,
the second argument is taken from the first. In division, the first argument is divided by the second.

Example

puts [+ 2 2]
puts [+ 1 2 3]
puts [- 10 1]
puts [* 6 7]
puts [/ 100 5]

Produces:

4
6
9
42
20

Hecl - The Mobile Scripting Language

10

Name
abs acos acos asin asin atan atan cbrt ceil cos cosh cosh exp expm1 floor hypot log log10 log1p pow
random round signum sin sinh sqrt tan tanh tanh — Floating point math commands

Synopsis
command {number} [number]

Description

Floating point math commands. The names are mostly self explanatory, corresponding to the methods
found here: http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

Note

Keep in mind that none of these commands are available in the MIDP1.0 version of Hecl, and
that the following commands are available only in J2SE versions of Hecl:

acos atan ceil round exp floor sin cos sqrt log tan asin

The following are only available in versions of Hecl built for Java 1.5 and above.

cbrt cosh expm1 hypot log10 log1p signum sinh tanh

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

Hecl - The Mobile Scripting Language

11

Name
after — Sleep / delayed script evaluation

Synopsis
after { milliseconds [script] | info [event] | cancel {event} [event...] | idle [script] }

Description

The after command is used, in the simple case, to simply halt evaluation of the script for milliseconds
milliseconds, or execute a script after that number of milliseconds.

The after command can also be used to manage timer events in Hecl via the info and cancel subcommands,
which, respectively, return information about existing events, and allow the cancellation of events.

Example

Pause for 1 second:

after 1000

Run script after 10 seconds, but do not pause execution of the main script:

after 10000 { puts "hello, later world" }

Cancel all timers:

for {set i 1} {< $i 11} {incr $i} {
 puts [after [* 10000 [random]] [list puts "Event number $i"]]
}

after 5000

foreach e [after info] {
 after cancel $e
 puts "Event $e cancelled"
}

twait forever

Will produce, on average, something like the following:

timer#1
timer#2
timer#3
timer#4
timer#5
timer#6
timer#7
timer#8
timer#9
timer#10
Event number 9
Event number 4

Hecl - The Mobile Scripting Language

12

Event number 10
Event timer#5 cancelled
Event timer#1 cancelled
Event timer#7 cancelled
Event timer#3 cancelled
Event timer#2 cancelled
Event timer#6 cancelled
Event timer#8 cancelled

Hecl - The Mobile Scripting Language

13

Name
and — Logical and

Synopsis
and {number} [number] [number] [...]

Description

The and command takes one or more arguments, and performs a binary and on them, in sequence.

Example

hecl> and 1 0
0
hecl> and 1 1
1
hecl> and 1
1
hecl> and 2 4
0
hecl> and 5 1
1
hecl> and 5 4
4
hecl> and 1 2 4 8
0

Hecl - The Mobile Scripting Language

14

Name
append — Append text to a variable.

Synopsis
append {varreference} {string}

Description

The append command takes two arguments, a variable reference, and a string to append to the variable.

Example

set foo "bar"
append $foo "beebop"
The foo variable now contains the string barbeebop

Produces:

barbeebop

Hecl - The Mobile Scripting Language

15

Name
break — Break out of a loop.

Synopsis
break

Description

The break command breaks out of a loop. If this command is not run from within a loop - the while or
foreach commands for instance, it generates an error.

Example

set i 0
while { true } {
 if { > $i 100 } {
 break
 }
 incr $i
}

In what would otherwise be an endless loop, the break command is used to exit.

Hecl - The Mobile Scripting Language

16

Name
bgerror — Called for background task errors.

Synopsis
append {message}

Description

Hecl calls bgerror when there is a problem in a background task (created with the after command, for
instance).

Example

hecl> proc bgerror {msg} { puts "Houston, we have a problem: $msg" }
hecl> after 1 { beebop }
timer#7

Produces:

Houston, we have a problem: Command beebop does not exist

Hecl - The Mobile Scripting Language

17

Name
catch — Evaluates a script, catching any errors.

Synopsis
catch {script} [varname]

Description

The catch command evaluates a script, and returns 0 if the script evaluated successfully. If there were
errors, catch returns 1. Optionally, a variable name may be passed to the command, where the results of the
script evaluation will be placed. In the case of errors, the stack trace will be placed in the variable argument.
If the script executes without problems, the variable will contain the result of the script execution.

Example

catch nosuchcommand foo
set foo

Produces:

 {ERROR {Command nosuchcommand does not exist}}

Hecl - The Mobile Scripting Language

18

Name
classof — Returns the name of the internal class of a Hecl Thing.

Synopsis
classof {variable}

Description

The classof command returns a string containing the Java name of the class that the Hecl variable contains
internally.

Example

classof [+ 1 2]

classof "foo"

Produces:

org.hecl.IntThing

org.hecl.StringThing

Hecl - The Mobile Scripting Language

19

Name
clock — Provides time utilities

Synopsis
clock [{seconds} | {time} | {format format}]

Description

The clock command is used to return information on the current time. With the seconds option, the
number of seconds since January 1st, 1970 are returned. With the time option, milliseconds since that
date are returned.

With the format option, the clock command takes a millisecond value and returns a formatted date and
time. For example:

Example

hecl> clock format [clock time]
Fri Jun 15 13:22:20 CEST 2007

Hecl - The Mobile Scripting Language

20

Name
continue — Skip to next cycle of a loop

Synopsis
continue

Description

The continue command is used within the bodies of looping commands such as if and while. When
continue is called, execution of the loop body stops and and execution moves on to the next iteration of
the loop.

Example

set i 0
set res {}
foreach x {a b c d e} {
 incr $i
 continue
 append $res $x
}
puts $i
puts $res

Produces:

5

The res variable is never appended to, so printing it out produces an empty string.

Hecl - The Mobile Scripting Language

21

Name
copy — Copy a Hecl value.

Synopsis
cd {value}

Description

The copy command makes a deep copy of a Hecl value, whereas normally, Hecl variables contain
references.

Example

hecl> set foo 1
set bee $foo
set bop [copy $foo]
incr $foo
puts "foo is $foo"
puts "bee is $bee"
puts "bop is $bop"

Produces:

foo is 2
bee is 2
bop is 1

Hecl - The Mobile Scripting Language

22

Name
double — Cast as a double

Synopsis
double {number}

Description

When given a number number, return its value cast as a double.

Important

This command does not appear in the MIDP1.0 version of Hecl, because it doesn't deal with
floating point.

Hecl - The Mobile Scripting Language

23

Name
eq — Tests string equivalence.

Synopsis
eq {string1} {string2}

Description

The eq commands compares two strings, returning 1 if they are equal, 0 if they are not.

Example

if {eq 1 1.0} {
 puts "True"
} else {
 puts "False"
}

Produces:

False

Despite being numerically equivalent, the strings "1" and "1.0" are different.

Hecl - The Mobile Scripting Language

24

Name
eval — Evaluate Hecl code.

Synopsis
eval {code}

Description

The eval command takes a string containing Hecl commands, evaluates them, and returns the result.

Example

set i 0
set str {incr}
lappend $str "i"
eval $str
puts $i

Produces:

1

Hecl - The Mobile Scripting Language

25

Name
exit — Exit the current process

Synopsis
exit [exitcode]

Description

The exit command stops the execution of the current process. It causes the exitcode (an integer) to be
returned by the process.

Hecl - The Mobile Scripting Language

26

Name
false — Return false

Synopsis
false

Description

The false command is the opposite of true, and always returns a false value.

Hecl - The Mobile Scripting Language

27

Name
filter — Filter a list.

Synopsis
filter {list} {varname} {script}

Description

The filter command takes a list and filters it according to the code provided in code. The current element
of the list being considered is stored in the varname provided. A list of 'matches' is returned.

Example

set lst {1 2 3 4 5 4 3 2 1}
puts [filter $lst x {= $x 4}]

Produces:

4 4

Hecl - The Mobile Scripting Language

28

Name
float — Cast as a float

Synopsis
float {number}

Description

When given a number number, return its value cast as a float.

Important

This command does not appear in the MIDP1.0 version of Hecl, because it doesn't deal with
floating point.

Hecl - The Mobile Scripting Language

29

Name
for — For loop.

Synopsis
for {initialization} {test} {step} {body}

Description

The for command is like in many other languages like C and Java. As arguments, it takes an
initialization option, which is often used to set a variable to some initial value, a test to determine
whether to continue running, a step script option which is run at each iteration of the body (to increment
a variable, for example), and the body itself.

Example

set out {}
for {set i 0} {< $i 10} {incr $i} {
 append $out $i
}
puts $out

Produces:

0123456789

Hecl - The Mobile Scripting Language

30

Name
foreach — Iterate over elements in a list.

Synopsis
foreach {varname} {list} {body} foreach {varlist} {list} {body}

Description

The foreach command iterates over a list. For each element of the list, varname is set to a new element
of the list, and then body is run.

Example

set lst {a b c d e}
set res {}
foreach el $lst {
 append $res $el
}
puts $res

Produces:

abcde

Hecl - The Mobile Scripting Language

31

Name
global — Use global variable from within a proc.

Synopsis
global {varname} [varname...]

Description

By default, Hecl variables are always local. Global variables are not visible from within procedures. The
global command makes global variable varname visible within a procedure.

Example

set foo 1
proc incfoo {} {
 global foo
 incr $foo
}
incfoo
puts $foo

Produces:

2

Hecl - The Mobile Scripting Language

32

Name
hasclass — An interface to Class.forName

Synopsis
hasclass {classname}

Description

Reports whether a given class is present or not.

Important

Keep in mind that in J2ME, using an obfuscator, class names may not be what you think they
are! Only use this for system-defined classes.

Example

hecl> hasclass org.hecl.net.HttpCmd
1
hecl> hasclass oogyboogy
0

Hecl - The Mobile Scripting Language

33

Name
hash — Create and manipulate hash tables.

Synopsis
hash {list} hget {hash} {key} hset {hash} {key} {value} hcontains {hash} {key}
hclear {hash} hkeys {hash} hremove {hash} {key}

Description

The hash command takes an even-numbered list and creates a hash table from it, using the even elements
as keys, and odd elements as values. A new hash table is returned. The hget and hset commands operate
on hash tables. Both take a hash table as their first argument. hget also takes a key, and returns the
corresponding value, or an error if no key by that name exists. To determine whether a given key exists, use
the hcontains command, which returns true or false depending on whether the key exists in the hash table.

The hkeys command returns the keys of the hash table, as a list.

The hclear command clears an entire hash table, whereas hremove removes the value associated with
a given key.

Example

set foo [hash {a b c d}]
hset $foo a 42
puts [hget $foo a]

Produces:

42

Hecl - The Mobile Scripting Language

34

Name
if — Conditionally execute code.

Synopsis
if {test} {code} [{elseif} | {test} | {code} ...] [{else} | {code}]

Description

The if command executes Hecl code conditionally. In its most basic form, it executes a test. If the results
are not 0, then it executes code. If not, no further actions take place. if may take any number of elseif
clauses, which have their own test and code. Finally, if none of the conditions has matched, it is also
possible to supply an else clause that will be executed if the results of the if and elseif tests were all false.

Example

if { true } {
 puts "true"
} else {
 puts "false"
}

Produces:

true

if { > 0 1 } {
 puts "true"
} else {
 puts "false"
}

Produces:

false

Hecl - The Mobile Scripting Language

35

Name
incr — Increment a variable.

Synopsis
incr {varreference} {integer}

Description

The incr command takes a variable reference, and adds integer to it.

Example

set foo 1
incr $foo
puts "foo is $foo"
incr $foo 10
puts "foo is now $foo"

Produces:

2
12

Hecl - The Mobile Scripting Language

36

Name
intro — Introspection command.

Synopsis
intro [{commands}]

Description

The intro command is used for Hecl introspection. It takes a subcommand which causes it to perform the
desired function.

Example

 puts [sort [intro commands]]

Produces: (depending on the available commands)

* + - / < = > append break catch continue copy eq eval filter for
foreach global hash hget hset if incr intro join lappend lindex
list llen lset proc puts ref return search set strindex strlen sort
source split time true upeval while

Hecl - The Mobile Scripting Language

37

Name
join — Join elements of a list to create a string.

Synopsis
join {list} [string]

Description

The join command takes a list argument, and optionally, a string argument. It joins all elements of
the list together with the string, or, if a string is not provided, with a space.

Example

puts [join {a b c} "|"]

Produces:

a|b|c

Hecl - The Mobile Scripting Language

38

Name
lappend — Append an element to a list.

Synopsis
lappend {listreference} {element}

Description

The lappend takes a reference to a list, and an element to add to that list.

Example

set foo a
lappend $foo "b"
puts $foo
lappend $foo "c d"
puts $foo

Produces:

a b
a b {c d}

Hecl - The Mobile Scripting Language

39

Name
lindex — Return the Nth element of a list

Synopsis
lindex {list} {index}

Description

The lindex command takes a list and an index number as arguments, and return's the index'th element
of the list.

Example

puts [lindex {a b c} 2]

Produces:

c

Hecl - The Mobile Scripting Language

40

Name
list — Create a list

Synopsis
list {element} [{element} ...]

Description

The list command takes any number of arguments and returns a list.

Example

puts [list a b c [list 1 2 3]]

Produces:

a b c {1 2 3}

Hecl - The Mobile Scripting Language

41

Name
llen — List length.

Synopsis
llen {list}

Description

The llen returns the length of its list argument.

Example

puts [llen {1 2 3 {a b c}}]

Produces:

4

Hecl - The Mobile Scripting Language

42

Name
lrange — Get range of elements from a list.

Synopsis
lrange {list} {first} {last}

Description

The lrange command fetches a range of elements from list, starting at element first and ending at
last.

Example

lrange {a b c d e f g} 0 2

Produces:

a b c

Hecl - The Mobile Scripting Language

43

Name
lset — Set list elements.

Synopsis
lset {listref} {index} [replacement]

Description

The lset command sets the index'th element of the list to replacement. If replacement is not
present, then the element is deleted.

Example

 set lst {a b c}
 lset $lst 1 x
 puts $lst

 lset $lst 1
 puts $lst

Produces:

a x c
a c

Hecl - The Mobile Scripting Language

44

Name
ne — String "not equal".

Synopsis
ne {string1} {string2}

Description

The ne commands compares two strings, returning 0 if they are equal, 1 if they are not.

Example

if {ne 1 00001} {
 puts "True"
} else {
 puts "False"
}

Produces:

True

Hecl - The Mobile Scripting Language

45

Name
not — Logical not

Synopsis
not {number}

Description

The not command performs a logical not on the argument given to it.

Example

hecl> not 0
1
hecl> not 1
0
hecl> not 4
0

Hecl - The Mobile Scripting Language

46

Name
or — Logical or

Synopsis
or {number} [number] [number] [...]

Description

The or command does a binary or of the numbers passed to it, so it can also be used as a logical or.

Example

hecl> or 1
1
hecl> or 0
0
hecl> or 1 0
1
hecl> or 2 4
6
hecl> or 1 2 4
7

Hecl - The Mobile Scripting Language

47

Name
proc — Create a new procedure.

Synopsis
proc [name] {arglist} {body}

Description

The proc command creates new procedures, which are virtually indistinguishable from built-in Hecl
commands. name is the name of the new command, or, if it is absent, an anonymous procedure is created
(and should be stored in a variable). arglist is a list of arguments that the new command will take and
make available as local variables within the body, which is the code executed every time the command
is called. If the last element of the argument list is args, the variable args is a list that is filled with any
arguments (including 0) above and beyond the number of arguments specified for the proc.

Example

proc addlist {lst} {
 set res 0
 foreach e $lst {
 incr $res $e
 }
 return $res
}

puts [addlist {1 2 3 4 5}]

Produces:

15

args Example

proc showargs {args} {
 puts "Args: $args"
}
showargs
showargs x y z

Produces:

Args:
Args: x y z

Anonymous proc Example

set foo [proc {x} { puts $x }]

Hecl - The Mobile Scripting Language

48

$foo beebop

Produces:

beebop

Hecl - The Mobile Scripting Language

49

Name
puts — Print text.

Synopsis
puts {text}

Description

The puts command prints text to stdout.

Example

puts "Hello, world"

Produces:

Hello, world

Hecl - The Mobile Scripting Language

50

Name
rename — Rename a command

Synopsis
rename {cmdname}

Description

Renames a Hecl command.

Example

hecl> rename puts send_it_to_the_screen
hecl> send_it_to_the_screen "hello world"
hello world

Hecl - The Mobile Scripting Language

51

Name
return — Returns a value from a procedure.

Synopsis
return {value}

Description

The return command returns a value from a proc command.

Example

proc someproc {} {
 set res 1
 return $res
 set res 2
 return $res
}
puts [someproc]

Produces:

1

Hecl - The Mobile Scripting Language

52

Name
search — Find the first instance of something in a list.

Synopsis
search {list} {varname} {script}

Description

The search command is similar to filter in functionality, except that it stops searching on the first match.

Example

set lst {1 2 3 4 5 4 3 2 1}
puts [search $lst x {= $x 4}]

Produces:

4

Hecl - The Mobile Scripting Language

53

Name
set — Set a variable.

Synopsis
set {varname} [value]

Description

The set sets the value of a variable varname to value value. If value is not provided, returns the
value of varname.

Example

set foo "bar"
set bee bop
puts "foo is $foo and bee is $bee"

Produces:

1
foo is bar and bee is bop

Hecl - The Mobile Scripting Language

54

Name
sort — Sorts list alphabetically.

Synopsis
sort {list}

Description

The sort command returns an alphabetically sorted list of the contents of list.

Example

puts [sort {padova rovigo verona vicenza venezia treviso belluno}]

Produces:

belluno padova rovigo treviso venezia verona vicenza

Hecl - The Mobile Scripting Language

55

Name
split — Split a string into a list.

Synopsis
split {string} [splitstring]

Description

The split command takes a string and splits it into a list, divided by splitstring, which defaults to
" " if not present.

Example

puts [split "aaa;bbb;ccc" ";"]
puts [split "aaa bbb ccc"]
puts [split "aaaxbbbycccxyddd" "xy"]

Produces:

aaa bbb ccc
aaa bbb ccc
aaaxbbbyccc ddd

Hecl - The Mobile Scripting Language

56

Name
strbytelen — Return the length of the string, in bytes.

Synopsis
strbytelen {string}

Description

The strbytelen returns the length of string, in bytes. The number of characters and bytes may be
different because of multi byte character encodings.

Hecl - The Mobile Scripting Language

57

Name
strcmp — Compare two strings, return 0 if equal.

Synopsis
strcmp {stringA} {stringB}

Description

The strcmp takes two strings and compares them, returning 0 if they are equal, 1 if the first string is
"greater than" the second string, or -1 if the first string is "less than" the second string.

Hecl - The Mobile Scripting Language

58

Name
strfind — Find one string in another.

Synopsis
strfind {string1} {string2}

Description

The strfind looks for the first occurence of string1 in string2. If it finds a match, it returns the index
where the first letter of the match lies. If it is not found, it returns -1.

Hecl - The Mobile Scripting Language

59

Name
strindex — Return the index'th character of string.

Synopsis
strindex {string} {index}

Description

The strindex command returns the index'th character of string.

Example

puts [strindex "Hello, world" 0]
puts [strindex "Hello, world" 11]

Produces:

H
d

Hecl - The Mobile Scripting Language

60

Name
strlast — Get the last occurance of one string within another string

Synopsis
strlast {string} {string_to_search} [start_index]

Description

Search string_to_search for the last place that string occurs, and return the index. If
start_index is provided, start searching from that position.

Hecl - The Mobile Scripting Language

61

Name
strlen — String length.

Synopsis
strlen {string}

Description

The strlen returns the length of string.

Example

puts [strlen "abcdefghijklmnopqrstuvwxyz"]

Produces:

26

Hecl - The Mobile Scripting Language

62

Name
strlower — Lower case a string

Synopsis
strlower {string}

Description

The strlower command returns a lower-cased version of string.

Hecl - The Mobile Scripting Language

63

Name
strrange — Return a substring from a string

Synopsis
strrange {string} {start} {end}

Description

The strrange command returns a substring composed of the characters in string from positions start
to end.

Hecl - The Mobile Scripting Language

64

Name
strrep — Repeat a string N times

Synopsis
strrep {string} {times}

Description

The strrep command returns times copies of string.

Hecl - The Mobile Scripting Language

65

Name
strreplace — Replace string A in string B

Synopsis
strreplace { {{from to}} } {string}

Description

The strreplace command replaces each instance of from with to in string.

Example

puts [strreplace {hi hello} blahhiblahblahhihiblah]

Produces:

blahhelloblahblahhellohelloblah

Hecl - The Mobile Scripting Language

66

Name
strtrim — Remove whitespace or other characters from the beginning/end of a string

Synopsis
strtrim {string} [totrim] strtriml {string} [totrim] strtrimr {string} [totrim]

Description

The strtrim command "trims" any leading or trailing whitespace from the string passed to it. The strtriml
and strtrimr commands trim from, and only from, the left and right sides of the string, respectively. All
of the trim commands take an optional argument that specifies what exactly to trim.

Examples

hecl> strtrim " foo "
foo
hecl> strtrim "hello world" "he"
llo world
hecl> strtriml "xxxyyyzzzxxx" xxx
yyyzzzxxx
hecl> strtrim " alone "
alone

Hecl - The Mobile Scripting Language

67

Name
strupper — Upper case a string

Synopsis
strupper {string}

Description

The strupper command returns a upper-cased version of string.

Hecl - The Mobile Scripting Language

68

Name
system.hasproperty — Check for existence of system properties

Synopsis
system.hasproperty {propertyname}

Description

Query for the existence of system properties that can be retrieved with the system.getproperty command.

Hecl - The Mobile Scripting Language

69

Name
system.getproperty — Get system properties

Synopsis
system.getproperty {propertyname}

Description

Retrieve information about system properties. Here is a list of some available system properties on Java
ME platforms: http://developers.sun.com/mobility/midp/questions/properties/index.html

http://developers.sun.com/mobility/midp/questions/properties/index.html

Hecl - The Mobile Scripting Language

70

Name
throw — Generates an exception that can be caught with catch

Synopsis
throw {message} [errortype]

Description

The throw command generates an exception, that can be caught with the catch command. message
is a human readable error message, whereas errortype is a code that can be matched by code doing
a catch. It can be used as a way for Hecl programs to distinguish between different types of errors in a
global catch section of code.

Examples

hecl> throw "oh no"
{ERROR {oh no}} {throw 1}
hecl> throw "oh no" USERERROR
{USERERROR {oh no}} {throw 1}

Hecl - The Mobile Scripting Language

71

Name
time — Time the execution of a script.

Synopsis
time {script} [repetitions]

Description

The time command executes script repetitions times, if repetitions is present, or once if
not. It measures the amount of time taken by this execution in milliseconds, and returns it.

Example

set time [time {
 set i 0
 while { < $i 100 } {
 incr $i
 }
} 10]
puts "Time is $time"

Produces:

Time is 6

Hecl - The Mobile Scripting Language

72

Name
true — Returns true.

Synopsis
true

Description

The true command returns 1, or true.

Example

if { true } {
 puts "true is true"
}

Produces:

true is true

Hecl - The Mobile Scripting Language

73

Name
unset — Unset a variable.

Synopsis
unset {varname}

Description

The unset command unsets a variable.

Hecl - The Mobile Scripting Language

74

Name
upeval — Evaluate script in next stack frame up.

Synopsis
upeval [level] {script}

Description

The upeval command evaluates script one stack frame up from the current stack frame, if level is
not present. If level is present, upeval behaves like so: if level is less than one, the script is run
that many levels down from the top of the stack. If it's 0, the script is run at the global level, and if it's a
positive number, the script is run at that absolute level up from the global namespace.

Example

proc stackframe {} {
 upeval { incr $foo }
}
set foo 1
stackframe
puts $foo

Produces:

2

Hecl - The Mobile Scripting Language

75

Name
while — While loop.

Synopsis
while {condition} {body}

Description

The while command continues to evaluate body while condition is true.

Example

set i 0
while { < $i 6 } {
 puts "i is $i"
 incr $i
}

Produces:

i is 0
i is 1
i is 2
i is 3
i is 4
i is 5

Hecl Extension Commands
These commands are available in various Hecl extensions, that may or may not be available in different
environments.

File Interaction
J2ME systems do not always have a file system, so these are not necessarily available. It is possible to
compile Hecl with or without these commands.

Note

The filefinder command is a bit different from the others, in that it is a graphical widget that is
used to select files, rather than a command that only interacts with the filesystem.

Hecl - The Mobile Scripting Language

76

Name
filefinder — File selection widget.

Synopsis
filefinder [-startdir start_directory] [-selectedcmd selected_command] [-matchcmd
match_command] [-errorcmd error_command]

Description

Creates a lcdui.list based file selection dialog that lets the user navigate up and down through directories
and select a file. The options are as follows:

• -startdir: selects the directory to start the search in.

• -selectedcmd: a proc that by default takes one argument: the name of the selected file.

• -matchcmd: a proc that takes one argument: the full URL of the file to match against. If the file is a
match, the proc must return a 1, otherwise 0. If a match occurs, the -selectedcmd will subsequently
be called.

• -errorcmd: a proc that is called with one argument: an error message. This is called when some error
occurs and can be used to display an error message.

Hecl - The Mobile Scripting Language

77

Name
open — Opens a file for reading or writing.

Synopsis
open {filename} [w]

Description

Opens filename for reading or writing, depending on whether the w flag is set or not. The form of
filename is platform-dependant. On Java ME systems, it needs to be a URI.

Hecl - The Mobile Scripting Language

78

Name
source — Evaluate Hecl script in a file.

Synopsis
source {filename}

Description

The source command evaluates the Hecl script located in file filename.

Example

Variable foo is defined as "Hello world" in foo.hcl
source foo.hcl
puts $foo

Produces:

Hello world

Hecl - The Mobile Scripting Language

79

Name
file.basename — Returns the file name with no paths.

Synopsis
file.basename {filename}

Description

Returns the file's name, with no URL schema or paths.

Example

file.basename file:///foo/bar/bee/bop.txt

Would return

bop.txt

Hecl - The Mobile Scripting Language

80

Name
file.cd — Change working directory.

Synopsis
file.cd {directory}

Description

The cd command changes the current working directory to directory. Or at least it changes where
Java thinks the working directory is. It does not change the process' actual working directory. Apparently
that's not possible with Java.

Hecl - The Mobile Scripting Language

81

Name
file.current — Returns the name of the file currently being evaluated.

Synopsis
file.current

Description

Returns the name of the file currently being evaluated. For instance, if a file foobar.hcl is being
sourceed, and there is a call to file.current in it, it will return the name of the file, foobar.hcl.

Hecl - The Mobile Scripting Language

82

Name
file.delete — Delete the file.

Synopsis
file.exists {filename}

Description

Delete filename.

Hecl - The Mobile Scripting Language

83

Name
file.devs — List available devices.

Synopsis
file.devs

Description

Returns a list of the root devices.

Hecl - The Mobile Scripting Language

84

Name
file.du — "Disk" usage.

Synopsis
file.du {filename}

Description

Returns a hash with the following keys: total - the total amount of space on the storage device where
the file resides, and used - the amount of space currently utilized.

Hecl - The Mobile Scripting Language

85

Name
file.exists — Does the file exist?

Synopsis
file.exists {filename}

Description

Returns 1 if the file exists, otherwise 0.

Hecl - The Mobile Scripting Language

86

Name
file.hidden — Is the file hidden?

Synopsis
file.hidden {filename}

Description

Return 1 if the file is "hidden". To quote from the relevant Java documentation:

The exact definition of hidden is system-dependent. For example, on UNIX systems a
file is considered to be hidden if its name begins with a period character ('.'). On Win32
and FAT file systems, a file is considered to be hidden if it has been marked as such in
the file's attributes. If hidden files are not supported on the referenced file system, this
method always returns false.

Hecl - The Mobile Scripting Language

87

Name
file.isdirectory — Is this a directory?

Synopsis
file.isdirectory {path}

Description

Returns 1 if the path in question is a directory, otherwise 0.

Hecl - The Mobile Scripting Language

88

Name
file.isopen — Is the file currently in use?

Synopsis
file.isopen {filename}

Description

Returns 1 if the file is currently open, otherwise 0.

Hecl - The Mobile Scripting Language

89

Name
file.join — Creates a filename from a list.

Synopsis
file.join {list of path elements}

Description

Given a list of path elements, like {foo bar bee bop}, creates a filename like foo/bar/bee/bop.

Hecl - The Mobile Scripting Language

90

Name
file.list — List files in a directory.

Synopsis
file.list {directory}

Description

Lists the files in the specified directory.

Hecl - The Mobile Scripting Language

91

Name
file.mkdir — Creates the directory.

Synopsis
file.mkdir {directory}

Description

Creates the named directory.

Hecl - The Mobile Scripting Language

92

Name
file.mtime — Returns the file modification time.

Synopsis
file.mtime {filename}

Description

Returns the time the file was last modified, as a value expressed in milliseconds since the "epoch" (00:00:00
GMT, January 1, 1970).

Hecl - The Mobile Scripting Language

93

Name
file.readable — Is the file readable?

Synopsis
file.readable {filename}

Description

Checks to see whether the file exists and is readable, and if so, returns 1. Otherwise, returns 0.

Hecl - The Mobile Scripting Language

94

Name
file.rename — Rename a file.

Synopsis
file.rename {oldname} {newname}

Description

Renames oldname to newname.

Hecl - The Mobile Scripting Language

95

Name
file.size — Returns the file's size.

Synopsis
file.size {filename}

Description

Returns filename's size, in bytes.

Hecl - The Mobile Scripting Language

96

Name
file.split — Return a list of a path's components.

Synopsis
file.split {filename}

Description

Takes a filename and returns a list of all the file's components.

Hecl - The Mobile Scripting Language

97

Name
file.truncate — Truncates the file.

Synopsis
file.truncate {filename} {newlength}

Description

Truncates the file, making it at most newlength bytes long.

Hecl - The Mobile Scripting Language

98

Name
file.writable — Is the file writable?

Synopsis
file.writable {filename}

Description

Checks to see whether the file exists and is writable, and if so, returns 1. Otherwise, returns 0.

HTTP
Even basic J2ME-enabled cell phones can access web pages (although they may not be able to create TCP/
IP sockets). Hecl provides basic http commands

Hecl - The Mobile Scripting Language

99

Name
http.geturl — Fetch contents of a URL.

Synopsis
http.geturl {url} [-query POSTdata] [-headers list of headers] [-validate [1|0]]

Description

The http.geturl command performs an HTTP request to the given url and returns information about the
results. This information is returned as a hash table that can be accessed with the various h* commands
such as hget. The list of keys returned includes the following, which are set by Hecl. Also created as keys
are the various HTTP headers, such as connection, content-length, content-type, last-modified, and so on.

• binary: 1 if the data returned is binary, otherwise 0.

• charset: The charset used for the returned data.

• data: The returned data. For instance, if you fetched an ordinary web page, this would be its HTML
contents.

• ncode: The numeric code of the response, such as 404, 500, 301, and so on.

• status: The request status - ok if the request was successfully processed.

The -query option is used to send key/value pairs of variables. In order to set random headers, the -
headers argument is used. The -validate option exists to send a HEAD request.

Example

Evaluate Hecl script located on a web site.
eval [hget [http.geturl http://www.hecl.org/somescript.hcl] data]

Add some headers to a request:

http.geturl http://www.hecl.org/ -headers {Set-Cookie foo=bar}

Hecl - The Mobile Scripting Language

100

Name
http.formatQuery — URL Encode a request

Synopsis
http.formatQuery [key val]

Description

The http.formatQuery command takes a series of key value pairs and urlencodes them. Useful in order
to pass data to the -query option of http.geturl

Hecl - The Mobile Scripting Language

101

Name
http.data — A shortcut to get the data from an http.geturl response.

Synopsis
http.data {request}

Description

The http.data command is equivalent to an hget with data as the key.

http.data [http.geturl http://www.dedasys.com]

Hecl - The Mobile Scripting Language

102

Name
http.ncode — A shortcut to get the numeric code from an http.geturl response.

Synopsis
http.ncode {request}

Description

The http.data command is equivalent to an hget with ncode as the key.

http.ncode [http.geturl http://www.dedasys.com]

Hecl - The Mobile Scripting Language

103

Name
http.status — A shortcut to get the status from an http.geturl response.

Synopsis
http.status {request}

Description

The http.status command is equivalent to an hget with status as the key.

http.status [http.geturl http://www.dedasys.com]

Location
Access to your phone's location API (JSR 179). Get information on your precise location.

Note

Not available on all phones.

Hecl - The Mobile Scripting Language

104

Name
location.get — Get location information.

Synopsis
location.get { {timeout} | { {-callback} {callbackProc} [{-timeout} {timeout}] [{-
onerror} {onErrorProc}] } }

Description

The location.get command operates in two ways:

1. The simplest way is to simply call the command with a timeout argument. The program will block
until the command returns an answer, in the form of a hash table (see below), which could take up to
several minutes.

2. The alternative way of calling location.get is to pass it a -callback callbackProc, which is the
name of a proc that will be called when the information is available, with a hash table specifying the
results. Program execution continues and does not block on the location.get call. The callbackProc
takes one argument, which is a hash of information about the location. When using -callback it is
also possible to specify a -timeout option (in seconds), and an -onerror option. This is used in
case of errors: the specified onErrorProc

Either method will supply the user with a hash table with the following elements. See also the
JavaDocs here: javax/microedition/location/Location [http://library.forum.nokia.com/index.jsp?topic=/
Java_Developers_Library/GUID-4AEC8DAF-DDCC-4A30-B820-23F2BA60EA52/javax/microedition/
location/Location.html]

• lat: latitude.

• lon: longitude.

• alt: altitude.

• haccuracy: horizontal accuracy, in meters.

• vaccuracy: vertical accuracy, in meters.

• location_method: contains a hash table of its own with information about the method used to
ascertain the location. Possible values include:

• ASSISTED: Location method is assisted.

• UNASSISTED: Location method is unassisted.

• NETWORKBASED: Location is derived from the network.

• TERMINALBASED: Location is obtained from a GPS terminal.

• ANGLEOFARRIVAL: Location method Angle of Arrival for cellular / terrestrial RF system.

• CELLID: Location method Cell-ID for cellular (in GSM, this is the same as CGI, Cell Global
Identity).

• SATELLITE: Location method using satellites (for example, Global Positioning System (GPS)).

http://library.forum.nokia.com/index.jsp?topic=/Java_Developers_Library/GUID-4AEC8DAF-DDCC-4A30-B820-23F2BA60EA52/javax/microedition/location/Location.html
http://library.forum.nokia.com/index.jsp?topic=/Java_Developers_Library/GUID-4AEC8DAF-DDCC-4A30-B820-23F2BA60EA52/javax/microedition/location/Location.html
http://library.forum.nokia.com/index.jsp?topic=/Java_Developers_Library/GUID-4AEC8DAF-DDCC-4A30-B820-23F2BA60EA52/javax/microedition/location/Location.html
http://library.forum.nokia.com/index.jsp?topic=/Java_Developers_Library/GUID-4AEC8DAF-DDCC-4A30-B820-23F2BA60EA52/javax/microedition/location/Location.html

Hecl - The Mobile Scripting Language

105

• SHORTRANGE: Location method Short-range positioning system (for example, Bluetooth LP).

• TIMEDIFFERENCE: Location method Time Difference for cellular / terrestrial RF system (for
example, Enhanced Observed Time Difference (E-OTD) for GSM).

• TIMEOFARRIVAL: Location method Time of Arrival (TOA) for cellular / terrestrial RF system.

• speed: ground speed, in meters per second.

• course: course, in degrees relative to true north.

Net
Networking commands

Hecl - The Mobile Scripting Language

106

Name
base64::decode — Base 64 decode

Synopsis
base64::decode {encoded-data}

Description

The base64::decode command does a base64 decode of the string passed to it.

Hecl - The Mobile Scripting Language

107

Name
base64::encode — Base 64 encode

Synopsis
base64::encode {data}

Description

The base64::encode command does a base64 encode of the string passed to it.

RecordStore
Record Store is the name for persistent storage in J2ME. Even simple MIDP1.0 phones have this feature,
and utilize it to store data between invocations of the application.

Hecl - The Mobile Scripting Language

108

Name
rms.list — List available record store names, or id's for a name.

Synopsis
rms.list [rsname]

Description

The rms.list command, when called without arguments, returns a list of names of the available record
stores that have already been created. When called with an record store name returns the list of
id's that are currently in use for that record store.

Example

foreach name [rs.list] {
 puts "Listing of id's for $name :"
 puts [rs.list $name]
}

Produces:

yyy

Hecl - The Mobile Scripting Language

109

Name
rms.size — Returns the size occupied by the record store

Synopsis
rms.size {rsname}

Description

The rms.size command returns the size, in bytes, occupied by the recordstore specified.

Hecl - The Mobile Scripting Language

110

Name
rms.sizeavail — Returns the amount of space available to grow for this record store.

Synopsis
rms.sizeavail {filename}

Description

The rms.sizeavail command returns the size in bytes left to grow for the specified recordstore.

Hecl - The Mobile Scripting Language

111

Name
rms.set — Sets the value of a record store

Synopsis
rms.set {rsname} [recordid] {data}

Description

The rms.set command takes, as arguments, the name of the record store; optionally, the record id to set, and
finally, the data to insert into the record store. If the record id is not specified, the default value of 1 is used.

Hecl - The Mobile Scripting Language

112

Name
rms.get — Fetch the value of the specified record store and record id

Synopsis
rms.get {rsname} [recordid]

Description

The rms.get command returns the value of the data stored in record store rsname. The optional argument
recordid specifies the record id, and defaults to 1. An error is thrown if the record does not exist.

Example

rms.set highscore 1 [highscore]
... application restarted ...
set highscore [rms.get highscore 1]

Hecl - The Mobile Scripting Language

113

Name
rms.add — Adds data to the specified record store, returning the new record id.

Synopsis
rms.add {data}

Description

The rms.add command adds data to the named record store, returning the record id with which it may
be retrieved in the future.

Hecl - The Mobile Scripting Language

114

Name
rms.delete — Deletes either the record store, or a record id associated with a record store.

Synopsis
rms.delete {rsname} [recordid]

Description

The rms.delete command deletes either the entire record store, if a record id is not specified, or if
one is, the record id in question.

Hecl - The Mobile Scripting Language

115

Name
rms.hset — Sets a key/value pair in the given record store.

Synopsis
rms.hset {rsname} {key} {value}

Description

The rms.hset command, given the name of a record store rsname treats it as a hash table, setting the
value of key with data.

Hecl - The Mobile Scripting Language

116

Name
rms.hget — Gets the value of a given key in the specified record store

Synopsis
rms.hget {rsname} {key}

Description

The rms.hget command returns the data associated with key in the named record store.

Hecl - The Mobile Scripting Language

117

Name
rms.hexists — Determine whether a given key exists in a record store.

Synopsis
rms.hexists {rsname} {key}

Description

The rms.hexists command returns 1 if the given key exists in the named record store.

Hecl - The Mobile Scripting Language

118

Name
rms.hkeys — Returns all keys associated with a given record store.

Synopsis
rms.hkeys {rsname}

Description

The rms.hkeys command returns a list of keys associated with the named record store.

Hecl - The Mobile Scripting Language

119

Name
rms.hdel — Deletes a key from the specified record store.

Synopsis
rms.hdel {rsname} {key}

Description

The rms.hdel command deletes key from record store rsname.

K-XML
The K-XML extension provides the kXML 2 parser functionality for hecl. kXML 2 implements the
XmlPull API. Please find general information about XmlPull parsers including the interface documentation
at xmlpull.org.

Note

Kxml is not compiled into the default build, so you have to change the kxml property from 0 to
1 in the cldc11midp20.properties file and recompile Hecl.

xmlpull.org

Hecl - The Mobile Scripting Language

120

Name
kxml.create — Returns the kxml parser object.

Synopsis
kxml.create

Description

The kxml.create creates a kxml parser object.

set xmlParser [kxml.create]

Hecl - The Mobile Scripting Language

121

Name
kxml.gettext — Returns the text content of the current event as a string.

Synopsis
kxml.gettext

Description

The kxml.gettext returns the text content of the current XML event as a string.

The value returned depends on current event type, for example for TEXT event it is element content (this
is typical case when kxml.next is used). See description of kxml.nextToken for detailed description of
possible returned values for different types of events.

Note

In case of ENTITY_REF, this method returns the entity replacement text (or an empty string if
not available).

Hecl - The Mobile Scripting Language

122

Name
kxml.input — Sets a input stream the kxml-parser is going to process.

Synopsis
kxml.input { xmlParser} { xmlStream}

Description

Set the xml input stream to the given xmlParser.

set http [http.geturl "http://www.google.com/ig/api?weather=$city,$country"]
set xmlStream [hget $http data]
kxml.input $xmlParser $xmlStream

Hecl - The Mobile Scripting Language

123

Name
kxml.nexttag — Call kxml.next and return event if it is START_TAG or END_TAG otherwise throw
an exception.

Synopsis
kxml.nexttag { xmlParser}

Description

Call kxml.nexttag and return event if it is START_TAG or END_TAG otherwise throw an exception.It
will skip whitespace TEXT before actual tag if any.

Hecl - The Mobile Scripting Language

124

Name
kxml.next — Get next parsing event.

Synopsis
kxml.next { xmlParser}

Description

The kxml.next advance the parser to the next event. The int value returned from next determines the
current parser state and is identical to the value returned from following calls to kxml.event.

The following event types are seen by kxml.next .

• START_DOCUMENT 0 :Initially, the parser is in the START_DOCUMENT state.

• START_TAG 2: An XML start tag was read.

• TEXT 4: Text content was read; the text content can be retreived using the kxml.gettext method.

• END_TAG 3: An end tag was read.

• END_DOCUMENT 1: No more events are available.

Hecl - The Mobile Scripting Language

125

Name
kxml.requirestart — Test if the current event is START_TAG type and do match the given name.

Synopsis
kxml.requirestart { xmlParser} { name}

Description

Test if the current event is START_TAG type do match the given name and any namesapce. If the test
is not passed, an exception is thrown. The exception text indicates the parser position, the expected event
and the current event that is not meeting the requirement.

assert the current event is a START_TAG event "forecast_conditions"
kxml.requirestart $xmlParser "forecast_conditions"

Hecl - The Mobile Scripting Language

126

Name
kxml.requireend — Test if the current event is END_TAG type and do match the given name.

Synopsis
kxml.requireend { xmlParser} { name}

Description

Test if the current event is END_TAG type and do match the given name and any namespace. If the test
is not passed, an exception is thrown. The exception text indicates the parser position, the expected event
and the current event that is not meeting the requirement.

assert we have reach the END_TAG event of "forecast_conditions"
kxml.requireend $xmlParser "forecast_conditions"

Hecl - The Mobile Scripting Language

127

Name
kxml.attrcount — Returns the number of attributes of the current start tag.

Synopsis
kxml.attrcount { xmlParser}

Description

Returns the number of attributes of the current start tag, or -1 if the current event type is not START_TAG.

Hecl - The Mobile Scripting Language

128

Name
kxml.attrvalue — Returns the given attributes value.

Synopsis
kxml.attrvalue { xmlParser} { index}

Description

Returns the given attributes value.

Hecl - The Mobile Scripting Language

129

Name
kxml.getname — For START_TAG or END_TAG events, the name of the current element is returned.

Synopsis
kxml.getname { xmlParser}

Description

For START_TAG or END_TAG events, the name of the current element is returned.

loop over the stream until we reach the END_TAG event "current_conditions"
while {!= [strcmp [kxml.getname $xmlParser] "current_conditions"] 0 } {
 set name [kxml.getname $xmlParser]
 puts $name
 kxml.nexttag $xmlParser
}

Interfacing Hecl and Java
Hecl is not a replacement for Java, and is indeed meant to work hand in hand with Java. We attempt to
make it as easy as possible to call Java from Hecl, via the creation of new Hecl commands that can call
Java code, in addition to calling Hecl from Java, which is a matter of a few lines of code.

Calling Hecl code from Java

import org.hecl.files.HeclFile;

import org.hecl.Eval;
import org.hecl.Interp;
import org.hecl.Thing;
import org.hecl.ListThing;
import org.hecl.HeclException;

...

 try {
 /* First, create a new interpreter, and pass it a
 * mechanism to load resources with - in this case,
 * files. */
 Interp interp = new Interp();

 /* Add the files package */
 new HeclFile().loadModule(interp);
 /* Evaluate the file at args[0] */
 HeclFile.sourceFile(interp, args[0]);
 /* Evaluate some code in a string. */
 String helloworld = new String("puts {Hello, world!}");
 interp.eval(new Thing(helloworld));

Hecl - The Mobile Scripting Language

130

 } catch (Exception e) {
 System.err.println(e);
 }

The above code first creates a new interpreter. Next, it instantiates the HeclFile system. This isn't part of
the Hecl core, because some systems, like J2ME, may not have files. If you don't have files, you can still
use interp.eval to evaluate some code, which could come from whatever source you desire.

Creating new Hecl commands
Creating new Hecl commands is relatively simple. The first step is to create a new class for your command
in a file, say HelloCmd.java, which, for simplicity's sake, you could put in core/org/hecl/. The
code would look something like this:

import org.hecl.Command;
import org.hecl.HeclException;
import org.hecl.Interp;
import org.hecl.Thing;

class HelloCmd implements Command {

 public Thing cmdCode(Interp interp, Thing[] argv)
 throws HeclException {

 System.out.println("Hello world");
 return null;
 }
}

The command takes an interpreter and an array of Things as arguments, where the first Thing is the
name of the command itself, and the others are the arguments to it.

The "glue" that connects the name of your Hecl command with the Java code is also relatively simple:

 interp.addCommand("hello", new HelloCmd());

The above code would be included somewhere in commandline/Hecl.java, midp20/
Hecl.java or elsewhere, depending on what platform you're working on; or core/org/hecl/
Interp.java if you want to include it as part of the Hecl core.

Easy, no? There are a few other useful methods that you should be aware of, to share variables between
Hecl and Java, and to return results from your Hecl commands:

• interp.setVar(
 Thing
 varname
 ,

 Thing
 value

Hecl - The Mobile Scripting Language

131

);

This sets the value of varname to some value.

• Thing interp.getVar(
 Thing
 varname
);

 Thing interp.getVar(
 String
 varname
);

These methods take a variable name, either in string form or as a Thing, and return the Thing
associated with that variable.

• interp.result is used to set the result of a command. This oft-used variable is accessed directly
for simplicity, speed and smaller code size.

• int IntThing.get(
 Thing
 thing
);

Get an int from a Thing.

• String StringThing.get(
 Thing
 thing
);

Get a String from a Thing.

• Thing IntThing.create(
 int
 i
);

Creates a new thing from an int.

There are similar methods for strings, floats (where applicable), hashes and lists.

Building Hecl: Ant Targets
Since Hecl can be built for many different platforms, with many different capabilities, it requires a fairly
complex build system, based on Ant [http://ant.apache.org/], Antenna [http://antenna.sourceforge.net/],
and for Java ME, Proguard. [http://proguard.sourceforge.net/]. However, it's not necessary to understand
the intricacies of this system unless you're doing more advanced hacking: in that case, you should ask on
the mailing list if you need help.

The most important build targets are the following:

ant build: Build everything. This is a time-consuming process, but is the best way to make sure you have
built everything with the latest code.

http://ant.apache.org/
http://ant.apache.org/
http://antenna.sourceforge.net/
http://antenna.sourceforge.net/
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/

Hecl - The Mobile Scripting Language

132

ant packageCommandline: Builds the jars/j2se/Hecl.jar file for the j2se/command line version
of Hecl.
ant -propertyfile ./cldc11midp20.properties midlet: Builds the MIDP 2.0 version of Hecl.
ant -propertyfile ./cldc10midp10.properties midlet: Builds the MIDP 1.0 version of Hecl.
ant installAndroidPackage: Builds the Android version of Hecl and installs it on the Android emulator,
which must be running for the final step to work.
ant docs: Creates both the DocBook documentation and runs Javadoc.

JavaDocs
For the complete Hecl javadoc documentation, see the Hecl Javadocs [jdocs]. And, of course, look at the
Hecl source code to see how it's done!

Hecl and Java ME
Hecl is designed to be small enough to run on mobile devices such as cell phones. This means that for the
Hecl core, has been necessary to limit ourselves to Java API's that work with J2ME.

Hecl Java ME Tutorial

Note

This is a tutorial showing you how to use Hecl to write applications for Java ME. If you want a
simple introduction to the Hecl language, you can find that here: tutorial.

This tutorial first appeared here: Create a simple application with Hecl - Introducing
Hecl, a mobile phone scripting language [http://www.freesoftwaremagazine.com/articles/
creating_a_simple_application_with_hecl]. It is a tutorial style introduction writing Hecl code for mobile
phones, by David Welton.

The aim of this tutorial is to help you create cell phone applications, so let's get started right away. You'll
need a few things first:

• Sun's Java. With Ubuntu, you can get this like so:

apt-get install openjdk-6-jdk

• Sun's WTK toolkit [http://java.sun.com/products/sjwtoolkit/index.jsp]. While you don't need the tools
to compile Hecl (unless you want to hack on it!), you do want the emulator, so that you don't have to
load your app onto your phone each time you want to test it. It's not open source software (yet?), but it
does run on Linux, Mac and Windows, and of course it is free.

• Hecl itself. You can get the latest code here: http://www.hecl.org/downloads/hecl-latest.tgz.

Note

Hecl is always improving, so you should also consider checking out Hecl directly from git:
git clone git://github.com/davidw/hecl.git

Sun's WTK requires installation - you can put it somewhere like /opt, so it won't get mixed up with the
rest of your system. The installation process is very simple - just say yes to a few questions, and you're
done. Hecl doesn't require installation: everything you need is already there in the distribution.

To see if everything's working, you can try launching the emulator with the sample application: /opt/
WTK2.5.2/bin/emulator -classpath jars/cldc1.1-midp2.0/Hecl.jar Hecl

jdocs
jdocs
http://www.freesoftwaremagazine.com/articles/creating_a_simple_application_with_hecl
http://www.freesoftwaremagazine.com/articles/creating_a_simple_application_with_hecl
http://www.freesoftwaremagazine.com/articles/creating_a_simple_application_with_hecl
http://www.freesoftwaremagazine.com/articles/creating_a_simple_application_with_hecl
http://java.sun.com/products/sjwtoolkit/index.jsp
http://java.sun.com/products/sjwtoolkit/index.jsp
http://www.hecl.org/downloads/hecl-latest.tgz

Hecl - The Mobile Scripting Language

133

Note

With version 3 of the Sun WTK (which as of 2010-01 only runs on Windows and Mac),
the command line you need is as follows: /opt/WTK2.5.2/bin/emulator -
Xjam:install jars/cldc1.1-midp2.0/Hecl.jad

That should bring up something like this:

Figure 1: Hecl demo screen shot

This is Hecl's built in demo - its source code is located in midp20/script.hcl, but before I get too
far ahead of myself, let's go back and create the classic "Hello World" application, just to get started and
see how to work with Hecl.

Note

Hecl actually comes in several flavors, with slightly different GUI commands - MIDP1.0 (older
phones), which has fewer commands and doesn't do as much, and MIDP2.0, for newer phones,
which has a lot more features. This tutorial utilizes the MIDP2.0 commands, because that's what

Hecl - The Mobile Scripting Language

134

current phones are based on. The concepts described are very similar for the MIDP1.0 commands,
but the commands are slightly different. Please contact us if you are interested in a MIDP1.0
version of this tutorial.

To write your first Hecl program, open a text editor, and type the following program into a file - I'll call
it hello.hcl:

proc HelloEvents {cmd form} {
 [lcdui.alert -text "Hellllllllooooo, world!" -timeout forever] setcurrent
}

set form [lcdui.form -title "Hello world" -commandaction HelloEvents]
set cmd [lcdui.command -label "Hello" -longlabel "Hello Command" -type screen]

$form setcurrent
$form addcommand $cmd

$form append [lcdui.stringitem -label "Hello" -text "World"]

Not bad - 8 lines of code, and most of it's pretty clear just from looking at it. I'll go through it line by line,
so you understand exactly what's happening.

1. The first bit of code, that starts with proc HelloEvents, defines a "procedure": in other words a
function called HelloEvents. When this function is called, it creates an "alert" - think of it as a pop
up message telling you something important. -timeout forever tells the message to stay on the
screen until the user dismisses it.

2. The second command defines a form, with the command lcdui.form, with the title of "Hello World",
and connected to the HelloEvents proc. What this connection means is that when any commands
associated with the form are activated by the user, this procedure is called to handle them. The code
set form stores the form object in the variable form, so that it can be referenced later.

3. The following line creates a command that can be activated by the user. It has the label "Hello", and
is stored in the variable cmd. I use the screen type for the command, which is used for user defined
commands. There are some other predefined types such as exit and back.

4. $form setcurrent references the previously created form, and tells Hecl to display it on the screen.

5. The addcommand subcommand (you could also think of it as a "method", like in an object oriented
language) attaches the command I created above to the form. This makes the command visible in the
form.

6. Finally, I display a string on the form with the lcdui.stringitem command. On most phones, the -
label text is displayed in bold, and the -text text is displayed next to it.

That's it! Now, to transform the code into a cell phone application, run a command:

java -jar jars/JarHack.jar -hecljar jars/cldc1.1-midp2.0/Hecl.jar \
 -destdir ~/ -name Hello -script hello.hcl

This is all it takes - this command takes the existing Hecl.jar file, and replaces the Hecl script within
with our newly created hello.hcl script, and creates the resulting Hello.jar in your home directory
(referenced as ~/ in the command above).

Hecl - The Mobile Scripting Language

135

Now, we can run the code in the emulator to see the application:

/opt/WTK2.5.2/bin/emulator -cp ~/Hello.jar Hecl

Figure 2: Hecl Hello World screenshot

Highlighted, from the top, are the form's -title, the stringitem, and in the lower right corner, the
command labeled Hello.

If you press the "hello" button, the code in HelloEvents is executed, and an "alert" is popped up onto the
screen, and stays there until you hit the "Done" button.

While creating an application is very easy, unfortunately, installing it on a phone is not; there isn't much
that Hecl can do to ease that process, which is different for each phone. On Linux, for my Nokia telephone,
I use the gammu program to transfer programs to my phone, like so:

gammu nothing --nokiaaddfile Application Hecl

Hecl - The Mobile Scripting Language

136

Another method that may work better across different phones is to use the phone's browser to download
and install the application, by placing the .jar and .jad files on a publicly accessible web server, and
accessing the .jad file.

Note

Note that this will likely cost money in connection charges!

So far so good. Next, I'll create a small application that you can interact with to do something useful. It's a
simplified version of the shopping list that can be found here [http://shoplist.dedasys.com]. The theory of
operation behind this application is simple: typing a shopping list into a mobile phone is pretty painful - it's
much better to do the data entry via a web page, and then fetch the list with the mobile phone application.

For this tutorial, I've created a simple list on the ShopList web site, with the PIN number 346764, which
can be viewed here [http://shoplist.dedasys.com/list/show/346764]. Feel free to create your own shopping
lists - the site costs nothing to use. The cell phone application works like so: by entering the PIN, it
downloads the list of items and displays them on the phone screen as a series of checkboxes. Have a look
at the code to do this:

Process events associated with the shopping list screen.
proc ShopListEvents {exitcmd backcmd cmd shoplist} {
 if { eq $cmd $exitcmd } {
 midlet.exit
 } elseif { eq $cmd $backcmd } {
 global shopform
 $shopform setcurrent
 }
}

Create a new shopping list screen and fetch .
proc MakeList {exitcmd backcmd pin} {
 set url "http://shoplist.dedasys.com/list/fetch/${pin}"
 # Fetch the data, and retrieve the data field from the results hash.
 set data [hget [http.geturl $url] data]
 if { eq $data "PIN NOT FOUND" } {
 [lcdui.alert -type warning \
 -title "Pin Not Found" \
 -timeout forever\
 -text "The PIN $pin was not found on shoplist.dedasys.com"] setcurrent
 return
 }
 set shoplist [lcdui.list -title "Shopping List" \
 -type multiple]
 foreach e [split $data \n] {
 $shoplist append $e
 }
 $shoplist addcommand $exitcmd
 $shoplist addcommand $backcmd
 $shoplist setcurrent
 $shoplist configure -commandaction \
 [list ShopListEvents $exitcmd $backcmd]
}

Process events associated with the main form.

http://shoplist.dedasys.com
http://shoplist.dedasys.com
http://shoplist.dedasys.com/list/show/346764
http://shoplist.dedasys.com/list/show/346764

Hecl - The Mobile Scripting Language

137

proc ShopFormEvents {backcmd exitcmd pinfield
 fetchcmd cmd shopform} {
 if { eq $cmd $exitcmd } {
 midlet.exit
 } elseif { eq $fetchcmd $cmd } {
 MakeList $exitcmd $backcmd \
 [$pinfield cget -text]
 }
}

The action starts here...

Create a generic back command.
set backcmd [lcdui.command \
 -label Back \
 -longlabel Back -type back -priority 1]
Create an exit command.
set exitcmd [lcdui.command \
 -label Exit \
 -longlabel Exit -type exit -priority 2]

Create the form.
set shopform [lcdui.form -title "Shopping List"]
set pinfield [lcdui.textfield \
 -label "shoplist.dedasys.com PIN:" \
 -type numeric]
set fetchcmd [lcdui.command -label "Fetch" \
 -longlabel "Fetch Shopping List" \
 -type screen -priority 1]

$shopform append $pinfield
$shopform addcommand $exitcmd
$shopform addcommand $fetchcmd
$shopform setcurrent

$shopform configure -commandaction \
 [list ShopFormEvents $backcmd $exitcmd $pinfield $fetchcmd]

This is certainly more complex than the first example, but the general pattern is the same - screen widgets
and items are created, displayed, and procs are called to deal with commands.

As I mentioned previously, commands with specific, predefined tasks have their own types, as I can see
with the back and exit commands, which are respectively of types "back" and "exit".

After the two commands are defined, I create a form and add a textfield to it. By specifying -type
numeric for the textfield, I indicate that it is only to accept numbers - no letters or symbols.

After creating the Fetch command, I append the textfield to the form (or else it wouldn't be visible), add
the two commands to the form, and then, with setcurrent, make the form visible. The last line of code
configures the form to utilize the ShopFormEvents proc to handle events. The list argument warrants
further explanation:

Hecl, like many programming languages, has a global command that could be used in the various procs that
utilize the back and exit commands - you could simply say global backcmd, and then the $backcmd
variable would be available in that procedure. However, using global variables all over the place gets kind

Hecl - The Mobile Scripting Language

138

of messy, so what I want to do is pass in everything that the proc might need, and I do so by creating a
list: ShopFormEvents $backcmd $exitcmd $pinfield $fetchcmd. You can see that these
corresponds to the arguments that the proc takes: proc ShopFormEvents {backcmd exitcmd
pinfield fetchcmd cmd shopform}, except for the last two, which Hecl automatically passes
in. cmd is the command that was actually called, and shopform is of course the form that the proc was
called with. By comparing $cmd with the various commands that are available, it's possible to determine
which command called the proc, and act accordingly.

Now, let's build it and run it:

java -jar jars/JarHack.jar -hecljar jars/cldc1.1-midp2.0/Hecl.jar \
 -destdir ~/ -name ShopList -script shoplist.hcl
/opt/WTK2.5.2/bin/emulator -classpath ShopList.jar Hecl

Figure 3: Initial shoplist form

At this point, you enter the PIN number (346764), and press the Fetch button. This command executes
the code in MakeList. The first thing it does is attempt to fetch the data from the shoplist site, using the

Hecl - The Mobile Scripting Language

139

http.geturl command. Since this command returns a hash table, in order to get at the data returned, I
use the hget command to access the "data" element. If the PIN was not available on the server, an error
message is returned, and the user is returned to the first screen. Otherwise, a list of checkboxes is created
with lcdui.list, by specifying "multiple" as the type. Since the shopping list is sent "over the wire" (so to
speak...) as a list of lines, all I have to do to add it to the display is split it by lines with the split command,
and then iterate over that list with foreach. The result looks like that displayed figure 4.

Figure 4: Shopping List

And there you have it, a network-based shopping list in less than 100 lines of code. Of course, there is room
for improvement. For instance, in the production version of this shopping list application, RecordStore
(in Hecl, the rms.* commands make this functionality available) is utilized to save the list and its state
between invocations of the program, so that you can leave the application, run it again, and find the list
as you left it. Support for multiple lists might also be handy.

Of course, this tutorial barely scratches the surface. Hecl has a number of other GUI commands, and is
a complete programming language that can do some interesting and dynamic things. If you're curious,
the best way to learn more is to keep reading the documentation, and sign up for the Hecl Google Group
[http://groups.google.com/group/hecl], which can be accessed either as a web forum or as a mailing list.

http://groups.google.com/group/hecl
http://groups.google.com/group/hecl

Hecl - The Mobile Scripting Language

140

Quick start to developing Java ME apps
Creating new Hecl applications is quick and easy:

1. Create a Hecl script. For starters, you could use the hello.hcl script from the tutorial.

2. Use JarHack to create a new jar and accompanying jad file:

java -jar jars/JarHack.jar -hecljar jars/cldc1.1-midp2.0/Hecl.jar -destdir /tmp -name Hello -script hello.hcl

This creates Hello.jar and Hello.jad in the /tmp directory, using the hello.hcl script. It
utilizes the MIDP 2.0 version of Hecl in jars/cldc1.1-midp2.0/Hecl.jar

3. To run this code in the emulator:

/opt/WTK2.5.2/bin/emulator -classpath /tmp/Hello.jar Hecl

4. Once you've iterated through a few versions of the script, and are satisfied, you're ready to move it
to your phone. Unfortunately, we can't do that for you, as there is no standard method - each phone
manufacturer provides their own way. On Linux, I use the following command:

gammu nothing --nokiaaddfile Application Hecl

Another way to accomplish this is to put the jar and jad files on a web site and download them with
your phone's browser.

Hecl J2ME MIDP1.0 Commands

Note

Hecl has different GUI commands for the MIDP1.0 (older phones) and MIDP2.0 (newer). We
are in the process of documenting the MIDP2.0 commands.

Commands available in the J2ME MIDP1.0 version of Hecl to interact with the phone. Look in the
midp10/examples directory for examples of these commands and widgets in use.

Hecl - The Mobile Scripting Language

141

Name
alert — Creates an alert

Synopsis
alert [label title] [text text] [type [{alarm} | {confirmation} | {error} | {error} | {info} |
{warning}]]

Description

The lcdui Alert class. You must call setcurrent to actually display the alert.

Hecl - The Mobile Scripting Language

142

Name
choicegroup — Displays a choicegroup in the current form

Synopsis
choicegroup [label label] [type [{exclusive} | {implicit} | {multiple}]] [list list]

Description

The lcdui ChoiceGroup class.

Hecl - The Mobile Scripting Language

143

Name
cmd — Adds a command to a form/listbox/textbox

Synopsis
cmd [label label] [type [{back} | {cancel} | {exit} | {help} | {item} | {ok} | {screen} | {stop}]] [code
code]

Description

This is used to create and associate commands with a screen widget (form, listbox, textbox). The lcdui
Command class.

Hecl - The Mobile Scripting Language

144

Name
datefield — Displays an datefield in the current form

Synopsis
datefield [label] [typ [{date_time} | {date} | {time}]]

Description

The lcdui DateField class.

Hecl - The Mobile Scripting Language

145

Name
exit — Exits the application

Synopsis
exit

Description

Exits the application.

Hecl - The Mobile Scripting Language

146

Name
form — Creates a form

Synopsis
form [label title] [code code]

Description

The lcdui Form class. Note that in order to actually display the newly created form, you must call the
setcurrent command with a reference to the form as an argument.

Hecl - The Mobile Scripting Language

147

Name
gauge — Displays an gauge in the current form

Synopsis
gauge [label label] [maxval maximum_value] [val initial_value] [interactive [{1} | {0}]]

Description

The lcdui Gauge class.

Hecl - The Mobile Scripting Language

148

Name
getindex — Fetches a reference to the N'th element in a given form/listbox

Synopsis
getindex {widget} {index}

Description

Fetches the N'th element in a form.

Hecl - The Mobile Scripting Language

149

Name
getprop — Fetches the value of a given property from a widget

Synopsis
getprop {widget} {property}

Description

Fetches the value of a given property. For example:

 set tf [textfield label "Insert text:"]
 ...
 set inserted_text [getprop $tf text]

In this example, getprop fetches the text that has been inserted in the textfield. property must be a
valid property for the given widget.

Hecl - The Mobile Scripting Language

150

Name
listbox — Creates a listbox

Synopsis
listbox [label title] [type [{exclusive} | {implicit} | {multiple}]] [code code] [callback code]

Description

Similar to the lcdui ListBox class, but implemented as a class that extends Form, in order to enable
the use of callbacks. Like forms and textboxes, it is necessary to use the setcurrent command to actually
display a listbox.

Hecl - The Mobile Scripting Language

151

Name
noscreen — Runs without a current screen widget

Synopsis
noscreen {code}

Description

Normally, there is almost always a default screen widget present, so that when items are created, they
are automatically added to the screen widget that is in effect. The noscreen command executes the code
passed to it without a default screen widget.

Hecl - The Mobile Scripting Language

152

Name
screenappend — Appends an item to a form or listbox

Synopsis
screenappend {screen_widget} {widget}

Description

Appends an widget to the form or listbox screen_widget.

Hecl - The Mobile Scripting Language

153

Name
setcurrent — Displays an alert/form/listbox/textbox

Synopsis
setcurrent {screen_widget}

Description

Screen widgets (alerts, forms, listboxes and textboxes), are not displayed when created. setcurrent
displays them. For example:

 set f [form label "New Form"]
 setcurrent $f

Hecl - The Mobile Scripting Language

154

Name
setindex — Sets the indexth element in a form/listbox to specified item

Synopsis
setindex {widget} {index} {newitem}

Description

Sets the index'th item of a form/listbox to item newitem.

Hecl - The Mobile Scripting Language

155

Name
setprop — Sets a given property of a widget

Synopsis
setprop {widget} {property} {new_value}

Description

Sets the value of a given widget's property.

Hecl - The Mobile Scripting Language

156

Name
string — Adds a string to the current form.

Synopsis
string {string}

Description

Appends the specified string to the current form.

Hecl - The Mobile Scripting Language

157

Name
stringitem — Displays a stringitem in the current form

Synopsis
stringitem [label label] [text text]

Description

The lcdui StringItem class.

Hecl - The Mobile Scripting Language

158

Name
textbox — Creates a textbox

Synopsis
textbox [label title] [len length_in_characters] [type [{any} | {emailaddr} | {numeric} |
{phonenumber} | {passwd} | {url}]] [text text] [code code]

Description

The lcdui TextBox class. To display a textbox, you must use the setcurrent command.

Hecl - The Mobile Scripting Language

159

Name
textfield — Displays a textfield in the current form

Synopsis
textfield [label label] [len length_in_characters] [type [{any} | {emailaddr} | {numeric}
| {phonenumber} | {passwd} | {url}]] [text text]

Description

The lcdui TextField class.

Hecl Java ME MIDP2.0 Commands
The MIDP 2.0 commands in Hecl are more complete and more advanced than the 1.0 commands, and
should be used if possible. This is a fairly complete list of which devices are MIDP2.0 capable: http://
devices.j2mepolish.org/interactivedb/searchdevices.faces

To fully understand these commands, a perusal of the documentation here is likely a good idea: http://
java.sun.com/javame/reference/apis/jsr118/ In particular, look at the lcdui package.

This code was originally written and contributed to Hecl by Wolfgang Kechel. Thanks!

http://devices.j2mepolish.org/interactivedb/searchdevices.faces
http://devices.j2mepolish.org/interactivedb/searchdevices.faces
http://java.sun.com/javame/reference/apis/jsr118/
http://java.sun.com/javame/reference/apis/jsr118/

Hecl - The Mobile Scripting Language

160

Name
lcdui.alert — Pops up an alert

Synopsis
lcdui.alert [-title title] [-ticker tickerwidget] [-commandaction commandActionProc]
[-type { {info} | {warning} | {error} | {alarm} | {confirmation} }] [-text text] [-timeout
{ {milliseconds} | {forever} }] [-indicator { {1} | {0} }]

$alertcmd {setcurrent} [cget -optname] [configure -optname optval]

Description

The lcdui.alert command creates an alert to let the user know that something unusual has happened, or
to ask for confirmation. The object returned from lcdui.alert is itself a command, that can be called with
a subcommand setcurrent to make the alert the currently displayed item. For an in-depth look at the
Java code that this command is based on, see: javax.microedition.lcdui.Alert [http://java.sun.com/javame/
reference/apis/jsr118/javax/microedition/lcdui/Alert.html]

Example

[lcdui.alert -title "Reactor core meltdown" -text \
 "You went and pressed the red button, didn't you!" \
 -timeout forever] setcurrent

Live example: http://www.heclbuilder.com/scripts/show/141

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Alert.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Alert.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Alert.html
http://www.heclbuilder.com/scripts/show/141

Hecl - The Mobile Scripting Language

161

Name
lcdui.canvas — Creates a canvas

Synopsis
lcdui.canvas [-autoflush { {1} | {0} }] [-cmdbg color] [-cmdfg color] [-eventhandler code]
[-fullscreen { {1} | {0} }] [-title title] [-suppresskeys { {1} | {0} }]

$canvascmd [cget -optname] [configure -optname optval] [flush [x y width height]]
[graphics] [repaint] [servicerepaints]

Description

The lcdui.canvas command creates a canvas that can be used to draw arbitrary items, such as rectangles,
text, circles, and respond to keyboard events. For an in-depth look at the Java code that this command
is based on, see: javax.microedition.lcdui.game.GameCanvas [http://java.sun.com/javame/reference/apis/
jsr118/javax/microedition/lcdui/game/GameCanvas.html]

The options describing the canvas are as follows:

• -autoflush: Takes a boolean argument (1 or 0) indicating FIXME

• -cmdbg: Selects a background color for the command background.

• -cmdfg: Selects a background color for the command foreground.

• -eventhandler: The Hecl code to execute when an event is generated.

• -fullscreen: A boolean switch specifying whether to run in "full screen" mode. "Full screen" mode
means that commands, which would normally be accessible via certain keys on the cell phone, are not
accessible, and that those keys generate regular events instead of calling commands.

• -suppresskeys: A boolean switch specifying whether to suppress key events or not. Suppressing
these events, if the application does not need to keep track of them, may improve performance some.

The lcdui.canvas command returns an object that is itself a command, and can be called with several
subcommands:

• flush: With no argument, flushes (displays) the off-screen buffer to the visible display. With arguments
x y width height, flushes the specified section to the screen.

• graphics: Returns a graphics object that acts as a command to manipulate the Canvas' graphics buffer.

• repaint: Repaints the entire canvas.

• servicerepaints: Forces any repaints that haven't occured yet to be performed immediately.

Example

set canvas [lcdui.canvas -title "Test Canvas" -commandaction backToMainMenu \
 -eventhandler canvasEvents]
set graphics [$canvas graphics]
$graphics frect [list 10 10] [list 10 80]
$graphics frect [list 80 10] [list 10 80]

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/game/GameCanvas.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/game/GameCanvas.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/game/GameCanvas.html

Hecl - The Mobile Scripting Language

162

$graphics frect [list 10 50] [list 80 10]
$canvas setcurrent

Live example: http://www.heclbuilder.com/scripts/show/142

http://www.heclbuilder.com/scripts/show/142

Hecl - The Mobile Scripting Language

163

Name
lcdui.choicegroup — Creates a group of potential choices that can be added to a form.

Synopsis
lcdui.choicegroup [-label label] [-type { {exclusive} | {multiple} | {popup} }] [-fit { {default}
| {on} | {off} }]

$choicegroupcmd [cget -optname] [configure -optname optval] [append text [image]]
[delete itemnum] [deleteall] [insert position text [image]] [itemcget itemnum -option]
[itemconfigure itemnum -option value] [selection { {clear [index] } | {index} | {get} | {gettext}
| {set index} }] [size]

Note

Choicegroups also utilize the common "item" options, described here: lcdui item options

Description

The lcdui.choicegroup command creates a "ChoiceGroup" widget that can be added to a form. A
ChoiceGroup is a list of options that can be selected. ChoiceGroups come in three forms: radio buttons
(the exclusive type), where only one at a time may be selected, check boxes (the multiple
type), or as a popup. (check boxes). For an in-depth look at the Java code that this command is based
on, see: javax.microedition.lcdui.ChoiceGroup [http://java.sun.com/javame/reference/apis/jsr118/javax/
microedition/lcdui/ChoiceGroup.html]

The options describing the choicegroup are as follows:

• -label: Labels the choicegroup with the supplied text.

• -type: Determines the type of the chiocegroup, which can be one of multiple (check boxes),
exclusive (radio buttons), or a popup

• -fit: Specifies the type of word-wrapping desired. default means that the application has no
preferences and that the default can be used. The on option means that text wrapping should be
performed to fit long lines. The off option means that text wrapping should not be performed and that
long lines will be truncated, and there should be some indication of this truncation such as an ellipsis.

The lcdui.choicegroup command returns an object that is itself a command, and can be called with several
subcommands:

• append: Appends the given text to the choicegroup as one of the possible selections. Optionally, an
image (as generated by lcdui.image may also be specified.

• delete: Deletes the item specified by itemnum

• deleteall: Deletes all items in the given choicegroup.

• insert: Inserts the given text, and optional image at position

• itemcget: Given an item and an -option, which can be one of -font, -text, -image, -
selected, returns the requested information, with -selected returning 1 if the item is selected,
0 if it isn't.

• itemconfigure: Instead of returning information about the options listed above, sets the specified option
for the given item.

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/ChoiceGroup.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/ChoiceGroup.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/ChoiceGroup.html

Hecl - The Mobile Scripting Language

164

• selection: Used with a subcommand of its own, which can be one of:

• get: Returns a list of integers indicating which elements are selected.

• gettext: Returns the text of the selected element.

• set: Selects the specified item.

• clear: Clears the selection from the given item, or, if no itemnum is given, clears all selected items.

• size: Returns the number of elements in the choicegroup.

Example

set choicegroup [lcdui.choicegroup -label "60ies bands"]
$choicegroup append "Beatles"
$choicegroup append "Beach Boys"
$choicegroup append "Rolling Stones"
set form [lcdui.form -title "ChoiceGroup example form"]
$form append "Pick one:"
$form append $choicegroup
$form setcurrent

Live example: http://www.heclbuilder.com/scripts/show/143

http://www.heclbuilder.com/scripts/show/143

Hecl - The Mobile Scripting Language

165

Name
lcdui.command — Creates a command that can be attached to a screen

Synopsis
lcdui.command [-label label] [-longlabel label] [-priority priority] [-type { {back} |
{cancel} | {exit} | {help} | {item} | {ok} | {screen} | {stop} }]

Description

The lcdui.command command creates a command that can be attached to a Screen or an Item. For an in-
depth look at the Java code that this command is based on, see: javax.microedition.lcdui.Command [http://
java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Command.html]

The options describing the choicegroup are as follows:

• -label: A short label for the command, which should be as short as possible.

• -longlabel: A long, more descriptive label.

• -priority: A positive number indicating the order of appearance of commands, 1 being the highest
priority.

• -type: Indicates the type of command. The command types are documented here [http://java.sun.com/
javame/reference/apis/jsr118/javax/microedition/lcdui/Command.html#field_summary]

Example

set exitcmd [lcdui.command -label Exit -longlabel Exit \
 -type exit -priority 2]
set backcmd [lcdui.command -label Back -longlabel Back \
 -type back -priority 1]
set addtextcmd [lcdui.command -label AddText -longlabel AddText \
 -type screen -priority 1]

proc NewForm {} {
 global exitcmd
 global backcmd
 global addtextcmd
 set form [lcdui.form -title "Commands" -commandaction HandleCmd]
 $form setcurrent
 $form addcommand $exitcmd
 $form addcommand $backcmd
 $form addcommand $addtextcmd
}

proc HandleCmd {cmd form} {
 global exitcmd
 global backcmd
 if { eq $cmd $backcmd } {
 NewForm
 } elseif { eq $cmd $exitcmd } {
 [lcdui.alert -title "Goodbye" -text "Goodbye!" -type info \

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Command.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Command.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Command.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Command.html#field_summary
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Command.html#field_summary
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Command.html#field_summary

Hecl - The Mobile Scripting Language

166

 -timeout forever] setcurrent
 after 1000 midlet.exit
 }
 $form append "Blah blah"
}

NewForm

Live example: http://www.heclbuilder.com/scripts/show/144

http://www.heclbuilder.com/scripts/show/144

Hecl - The Mobile Scripting Language

167

Name
lcdui.date — Date/Time widget for lcdui forms

Synopsis
lcdui.date [-date date/time in seconds] [-label label] [-type { {date} | {date_time}
| {time} }]

$datecmd [cget -optname] [configure -optname optval]

Note

Date fields also utilize the common "item" options, described here: lcdui item options

Description

The lcdui.date command creates a widget that can either display, or allow the user to enter
a date, a time, or both. For an in-depth look at the Java code that this command is
based on, see: javax.microedition.lcdui.DateField [http://java.sun.com/javame/reference/apis/jsr118/
javax/microedition/lcdui/DateField.html]

The lcdui.date command takes these options:

• -label: A label for the date widget.

• -type: One of date, which only displays a date selection widget, time, which only displays a time
selection widget, or date_time, which allows the user to select both a date and a time.

• -date: The current time, expressed in milliseconds.

Example

set date [lcdui.date -label "Current date and time:" \
 -date [clock time] -type date_time]
set form [lcdui.form -title "Date Form"]
$form append $date
$form setcurrent

Live example: http://www.heclbuilder.com/scripts/show/144

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/DateField.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/DateField.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/DateField.html
http://www.heclbuilder.com/scripts/show/144

Hecl - The Mobile Scripting Language

168

Name
$eventcmd — Command/object describing a Canvas event.

Synopsis
$eventcmd [cget -optname] [configure -optname optval]

Description

The $eventcmd command is used to access information about events received by a Canvas. There is
no Hecl command to create event commands - they are passed in as arguments to the -eventhandler
specified for an lcdui.canvas.

There are a number of parameters that can be queried:

• -canvas: Returns the canvas command associated with the event's canvas.

• -reason: A number representing one of the following reasons:

 public static final int E_NONE = 0;
 public static final int E_PAINT = 1;
 public static final int E_PPRESS = 2;
 public static final int E_PRELEASE = 3;
 public static final int E_PDRAG = 4;
 public static final int E_KPRESS = 5;
 public static final int E_KRELEASE = 6;
 public static final int E_KREPEAT = 7;
 public static final int E_HIDE = 8;
 public static final int E_SHOW = 9;
 public static final int E_RESIZE = 10;
 public static final int E_UNKNOWN = -1;

Which correspond to:

• E_PAINT: Used when the Canvas' paint method is called.

• E_PRESS: Used when the Canvas' pointerPressed method is called.

• E_PRELEASE: Used when the Canvas' pointerReleased method is called.

• E_PDRAG: Used when the Canvas' pointerDragged method is called.

• E_KPRESS: Used when the Canvas' keyPressed method is called.

• E_KRELEASE: Used when the Canvas' keyReleased method is called.

• E_KREPEAT: Used when the Canvas' keyRepeated method is called.

• E_HIDE: Used when the Canvas' hideNotify method is called.

• E_SHOW: Used when the Canvas' showNotify method is called.

• E_RESIZE: Used when the Canvas' sizeChanged method is called.

Hecl - The Mobile Scripting Language

169

• E_UNKNOWN: Used to signify an unknown event.

• -x: The x coordinate of the event.

• -y: The y coordinate of the event.

• -width: The width of the screen area covered by the event.

• -height: The height of the screen area covered by the event.

• -keycode: An integer referencing the key involved in the event.

Note

Be aware that different phones may use different numbers.

• -keyname: Returns a string giving a cross platform name for the key pressed.
Names are given here: http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/
Canvas.html#field_summary, with the addition of "LEFT_SK" and "RIGHT_SK" for the left and right
soft keys These only occur when in full screen mode and the soft key events go to the program)

• -gameaction: Returns the integer code for the game action. Described in further detail here: http://
java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Canvas.html#gameactions

Example

See the example script in the midp20/ directory. http://github.com/davidw/hecl/blob/master/midp20/
script.hcl

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Canvas.html#field_summary
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Canvas.html#field_summary
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Canvas.html#gameactions
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Canvas.html#gameactions
http://github.com/davidw/hecl/blob/master/midp20/script.hcl
http://github.com/davidw/hecl/blob/master/midp20/script.hcl

Hecl - The Mobile Scripting Language

170

Name
lcdui.font — Font information and manipulation command.

Synopsis
lcdui.font [names] [fontname | {cget} { {-face} | {-size} | {-plain} | {-bold} | {-italic} | {-
underlined} | {-height} | {-baselineposition} }] [fontname charwidth string [offset [length
]]] [fontname stringwidth string [offset [length]]]

Description

The lcdui.font command is used to fetch information about fonts. For an in-depth look at the Java code
that this command is based on, see: javax.microedition.lcdui.Font [http://java.sun.com/javame/reference/
apis/jsr118/javax/microedition/lcdui/Font.html]

It accepts several subcommands:

• names: Returns a list of all the available fonts.

• fontname charwidth string: Returns the width, in pixels, of the given characters. Takes optional
offset and length parameters.

• fontname stringwidth string: Returns the width, in pixels, of the given string. Takes optional
offset and length parameters.

• fontname cget -option: Used to fetch information about a font. Allowed options are as follows:

• -face: One of "system", "proportional", or "monospace".

• -size: One of "small", "medium" or "large".

• -plain: Returns a 1 if the font is "plain" - not bold, underlined or italic, or 0 if it isn't.

• -bold: Returns 1 or 0 if the font is bold or not.

• -italic: Returns 1 or 0 if the font is italic or not.

• -underlined: Returns 1 or 0 if the font is underlined or not.

• -height: Returns the standard height of a line of text in this font, in pixels.

• -baselineposition: Returns the distance in pixels from the top of the text to the text's baseline.

Example

set form [lcdui.form -title "Font examples"]

$form setcurrent

foreach f [sort [lcdui.font names]] {
 set s [lcdui.stringitem -text $f]
 $s configure -font $f
 $form append $s
}

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Font.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Font.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Font.html

Hecl - The Mobile Scripting Language

171

Live example: http://www.heclbuilder.com/scripts/show/147

http://www.heclbuilder.com/scripts/show/147

Hecl - The Mobile Scripting Language

172

Name
lcdui.form — Creates a form that can contain various widgets

Synopsis
lcdui.form [-title title] [-ticker tickerwidget] [-commandaction commandActionProc]

$formcmd [cget -optname] [configure -optname optval] [size] [append { {string} | {image}
| {widget} }] [item itemnum] [delete itemnum] [deleteall] [setcurrent]

Description

The lcdui.form command creates a form, returning a command/object that can be used to further
manipulate the created form. For an in-depth look at the Java code that this command is
based on, see: javax.microedition.lcdui.Form [http://java.sun.com/javame/reference/apis/jsr118/javax/
microedition/lcdui/Form.html]

The subcommands accepted by the $formcmd that lcdui.form returns are as follows:

• cget: Fetch configuration options.

• configure: Set configuration options.

• item itemnum: Return the item identified by itemnum.

• delete itemnum: Delete the item identified by itemnum.

• deleteall: Delete all items associated with this form.

Example

set choicegroup [lcdui.choicegroup -label Choice -type popup]
foreach x {c1 c2 c3} {
 $choicegroup append $x
}
set ticker [lcdui.ticker -text "I am a Ticker!"]

set form [lcdui.form -title "Example Form"]
$form setcurrent
$form configure -ticker $ticker
$form append [lcdui.textfield -label "TextField" -text "TextField" -uneditable 1]
$form append [lcdui.textfield -label "Editable TextField" -text "editable text"]
$form append [lcdui.imageitem -image $logo -anchor center]
$form append [lcdui.spacer -label spacer1 -minwidth 200 -minheight 2]
$form append [lcdui.stringitem -text "Stringitem"]
$form append [lcdui.spacer -label spacer2 -minwidth 200 -minheight 4]
$form append [lcdui.date -label "Date/Time" -date [clock time]]
$form append $choicegroup
$form append [lcdui.imageitem -image $logo]
$form append [lcdui.gauge -label "How cool is Hecl?" -interactive 1 \
 -value 10 -maxvalue 10]

Live example: http://www.heclbuilder.com/scripts/show/148

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Form.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Form.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Form.html
http://www.heclbuilder.com/scripts/show/148

Hecl - The Mobile Scripting Language

173

Name
lcdui.gauge — Creates a gauge widget that can be attached to a form.

Synopsis
lcdui.gauge [-label label] [-interactive { {1} | {0} }] [-value value] [-maxvalue maxvalue]

$gaugecmd [cget -optname] [configure -optname optval]

Note

Gauge items also utilize the common "item" options, described here: lcdui item options

Description

The lcdui.gauge command creates a gauge element, and returns a command/object that can
be used to manipulate it. For an in-depth look at the Java code that this command is
based on, see: javax.microedition.lcdui.Gauge [http://java.sun.com/javame/reference/apis/jsr118/javax/
microedition/lcdui/Gauge.html]

The options for this command are as follows:

• -value: An integer giving the initial value of the gauge, or, one of these special values: "continuous-
idle", "continuous-running", "incremental-idle", or "incremental-updating". These values are utilized
for non-interactive guages that can be used as progress meters. These values are explained in further
detail on the javadoc page linked above.

-maxvalue: An integer giving the maximum value of the guage, or "indefinite" if there is no maximum
value.

-interactive: Either 1 or 0, depending on whether the gauge is interactive, or is for display purposes
only.

Example

set form [lcdui.form -title "Gauge Example"]
$form append [lcdui.gauge -label "From 1 to 10" -interactive 1 \
 -value 6 -maxvalue 10]
$form setcurrent

Live example: http://www.heclbuilder.com/scripts/show/149

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Gauge.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Gauge.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Gauge.html
http://www.heclbuilder.com/scripts/show/149

Hecl - The Mobile Scripting Language

174

Name
lcdui.image — Creates an image.

Synopsis
lcdui.image [-file filename] [-rms recordstore] [-resource resourcename] [-image
image] [-data data]

$imagecmd [cget -optname] [configure -optname optval] [thumbnail [thumbwidth
[thumbwidth]]] [graphics]

Description

The lcdui.image command creates an image, from some data, either by indicating a filename, record
store, or a resource name. It returns an object/command that can be utilized to manipulate the image.
Mutable images are those loaded from existing data, generally. Immutable images are created as
a "blank slate", with white pixels. For an in-depth look at the Java code that this command is
based on, see: javax.microedition.lcdui.Image [http://java.sun.com/javame/reference/apis/jsr118/javax/
microedition/lcdui/Image.html]

The options available for the lcdui.image command are described below:

• -file: Load the image from the given file name.

• -rms: Load the image from the given record store.

• -resource: Load the image from the given resource. By "resource", we mean a file included in the .jar.

• -image: Create a new image from an existing image.

• -data: Create a new image from binary data.

The subcommands available to an $imagecmd are listed below:

• thumbnail: Creates a thumbnail from the image.

• graphics: Unless the image is immutable, creates and returns a new graphics object associated with
the image.

Creating base64 encoded images

There are two ways to include images in Hecl applications. One is to add the image to the .jar file itself.
The second is to include it directly in the script, as a base64 included string. Here's how to do so on a
Linux machine:

1. Create an image. For example, with "The Gimp", an image manipulation program on Linux, you
might create a PNG, x.png.

2. Now you need to turn the binary PNG file into a string that can be included in a script:

base64 < x.png > x.txt

3. Now copy and paste x.txt into your script, like in the script below

Example

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Image.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Image.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Image.html

Hecl - The Mobile Scripting Language

175

base64 encoded PNG
set data {iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAYAAABw4pVUAAAAAXNSR0IArs4c6QAAAAZiS0dEAP8A
/wD/oL2nkwAAAAlwSFlzAAALEwAACxMBAJqcGAAAAAd0SU1FB9gKGBQIB6A2RzQAAAAZdEVYdENv
bW1lbnQAQ3JlYXRlZCB3aXRoIEdJTVBXgQ4XAAAG40lEQVR42u2dW0hUXRTH98w4Upk145gylRb1
YOhMNyIigkC65/2WYCARhgS9RXTDCHqyIiF66e7dHiywIBB66cHoQhko9DAP0zTpjIo4WJTp+O/J
j+/rM/caZ85tXH84b+fsvdb6edaZfc5aWxMACJZuZOYQMBAWA2EgLAbCQFgMhIGwGAgDYTEQFgNh
ICwGwkBYDISBsBgIA2EtKCDl5eXCZDLNeaxfv158//5ds0B8+/ZNrFu3TmpnRUWFsoZABQ0NDSE1
NRVCiDmPkydPQivV1tZK7VuxYgWGhoYUtUOo5XBHR4fUYZPJhBcvXqgOo7u7W2qbEAKPHj1S3Bah
puMlJSVSp9euXYvx8XHVbAqFQsjIyJDaVVZWpoo9qgIJBoNwOBxS50+cOKGaTceOHZPak5qaqniq
0gQIALS1tZHSQ3d3t+K2PHv2jGRLR0eHavFRHQgAFBUVSYOQkZGBUCikmA2jo6NwOp1SO0pLS1WN
jSZAAoEAUlJSpME4fvy4YjZUVVWRUlUwGIx/IADQ0tJCShfPnz+P+dyPHz8mzd3e3q56XDQDAgAF
BQXSoKxatQpjY2Mxm3N4eBhpaWnSeUtKSjSJiaZABgcHYbfbpcGprq6O2ZxlZWXS+RwOh+qpShdA
AKCpqYmUPp4+fRr1XO3t7aS52traNIuH5kAAIC8vTxokp9OJ0dHRqO5Gyg+J4uJiTWOhCyBfv36F
zWaTBquqqkrR55XD4UAgEGAgAPDw4UNSOnny5EnEYzc2NpLGbm1t1TwOugECAIcOHZIGLT09HSMj
I+Qx/X4/6e4rKirSRQx0BYQavMrKSvKYBw4ckI6XkpKiearSJRAAePDgASm9dHZ2Sse6ffs2aayW
lhbd+K87INTUlZaWhuHh4b+O4fV6kZycLB2nsLBQV77rEojf78fy5culwSwvL5/1+unpaeTm5pJS
1eDgIAOh6N69e/N+NX7z5k3Stc3NzbrzW7dAqA/kP9/IejweJCUlSa8rKCjQpc+6BuLz+bBs2TLy
6jocDmPXrl3S8+12u+5SlSGAAMCdO3fIi7rr16+Tzm1qatKtv7oHAgD79u0j/dUvWrRIel5+fr6u
fTUB+t98xufzCZfLJcbHx6Max263i/7+fuF0OrmUNBplZmaKa9euRT1OQ0ODrmGoVrkYK+3Zs4f0
jJjtyMvLM4SPhkhZM/r8+bNwu90Rpy6bzSb6+/vFypUrudg6llqzZo2or6+fV6oyAgzDpayZ1yI7
d+4kp6rDhw8byj9DpSwhhPD7/cLlcolQKCQ912KxCK/XK1avXs39IUqppqaGBEMIIcLhsOjq6jKW
g0a6nakvHP99JCcnw+fzGcZHwwChvpI3+nPEMEAOHjw47zWI1rVWcQfk/v37UcGYaUeLpDiCgcyR
qiiFD5Tj6NGjDCRaUb6vb926FZWVlZpV0y8YIJQKFKvVio8fP2JkZATp6enS8zMzM1XtYYwbINTy
0suXL/9zTWdnJ+kuOXXqFAOJVJQC7M2bN2NycvI/11VUVEivM5vN6OnpYSBUUep8rVYrent7/3ct
dZOC7OxsTExMMBCZBgYGSE08ly5d+usY1D6Quro6BiJTfn6+NJCbNm3Cr1+/5hyH0umbmJiIvr4+
BvI3UbqprFYrPnz4IB2L2i63Y8cOhMNhBjLfVBVJmqH2hTQ0NDCQP0XpcNq4caM0Vc1nYZmUlASv
18tAZtTc3CwNWkJCAt6/fx/x2F++fCFVP+7fv5+BRJLrL168OO85qNWPjY2NDKSwsFAaKLfbHfWa
Ye/evaT2BK3603UBhLK9RkJCAt69exf1XF6vF0uXLpXOd+TIkYUJhNo3fuHChZjNeevWLVLq6urq
WnhAKAs3l8sV09cb09PT2L17N2l/FSW3htIdkNbWVmlQLBYL3r59G/O5PR4PlixZIp2/trZ2YQAJ
BAKkbf7OnTunmA03btwgbcj58uXL+AdSXFwsDUZOTg5+/vypmA3hcJhU/ZiVlaWoHZoDoey3aLFY
8ObNG8Vt+fTpE6nB5/z58/EJhLoj6dmzZ1Vzvr6+nvSze7bvLoYHQtmzNzs7W9UUMTU1he3bt0vt
2rZtG6ampuIHCOWDkcViwevXr1V/iPb19SExMVFq39WrV+MDSDAYJH1SPXPmjGaLsStXrkjtW7x4
MTwej/GBlJaWSp3dsGEDfvz4oRmQyclJbNmyRWpnbm6usYFQNuA3m8149eqV1u840dvbC6vVKrX3
7t27xgRCrf44ffo09KK6ujqpvTabDQMDA8YDQtmONSsrS9NU9acmJibgdrs13dPXcC1t/C+PWAyE
gbAYCIuBMBAWA2EgLAbCQFgMhIGwGAhrFv0GfQwoE8oHj1AAAAAASUVORK5CYII=}

set logo [lcdui.image -resource /hecl_logo.png]
set ximg [lcdui.image -data [base64::decode $data]]
set form [lcdui.form -title "Show Image"]
$form append $logo
$form append $ximg
$form setcurrent

Live example: http://www.heclbuilder.com/scripts/show/150

http://www.heclbuilder.com/scripts/show/150

Hecl - The Mobile Scripting Language

176

Name
lcdui.imageitem — An item that can contain an image, in order to attach it to a form.

Synopsis
lcdui.imageitem [-appearance { {plain} | {button} | {hyperlink} }] [-image image] [-label label]
[-text text]

$imageitemcmd [cget -optname] [configure -optname optval]

Note

Image items also utilize the common "item" options, described here: lcdui item options

Description

The lcdui.imageitem command creates an item holding an image, in order to be able to attach an image
to a form. It also returns a command/object that can be used to manipulate the ImageItem. For an in-
depth look at the Java code that this command is based on, see: javax.microedition.lcdui.ImageItem [http://
java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/ImageItem.html]

The options unique to this command are as follows:

• -appearance: Specifies the appearance and behavior of the imageitem. The meaning of the various
values is explained in further detail here: javax.microedition.lcdui.Item [http://java.sun.com/javame/
reference/apis/jsr118/javax/microedition/lcdui/Item.html#appearance].

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/ImageItem.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/ImageItem.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/ImageItem.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Item.html#appearance
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Item.html#appearance
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Item.html#appearance

Hecl - The Mobile Scripting Language

177

Name
lcdui.list — Creates a full-screen list

Synopsis
lcdui.list [-title title] [-type { {exclusive} | {multiple} | {implicit} }] [-selectcommand cmd]

Description

The lcdui.list command creates a full-screen list and returns a command/object that can be used
to manipulate it. For an in-depth look at the Java code that this command is based on, see:
javax.microedition.lcdui.List [http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/
List.html]

The options unique to this command are as follows:

• -type: One of exclusive, multiple or implicit. Exclusive and multiple correspond,
respectively, to radio buttons and checkboxes. Implicit lists act like a menu, dispatching to the list's -
commandaction when a list item is selected.

• -selectcommand: Select the command which should be used for implicit list select actions.

Example

set selectcmd [lcdui.command -label Select -longlabel Select -type \
 item -priority 1]
set lst [lcdui.list -title "List Example" -commandaction selectname]
set names {Anna Barbara Carla Daniela Emanuela Federica}
foreach n $names {
 $lst append $n
}
$lst setcurrent
$lst addcommand $selectcmd
proc selectname {cmd lst} {
 global names
 [lcdui.alert -text "Selected: [lindex $names [$lst selection get]]"] \
 setcurrent
}

Produces:

Live example: http://www.heclbuilder.com/scripts/show/151

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/List.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/List.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/List.html
http://www.heclbuilder.com/scripts/show/151

Hecl - The Mobile Scripting Language

178

Name
lcdui.settings — Returns or sets information about the graphical environment.

Synopsis
lcdui.settings [-color] [-alphalevels] [-alertimagewidth] [-alertimageheight] [-listimagewidth] [-
listimageheight] [-choiceimagewidth] [-choiceimageheight] [-bg] [-fg] [-hilightbg] [-hilightfg] [-border]
[-hilightborder] [-borderstyle] [-hilightborderstyle] [-cvfullscreen [{1} | {0}]] [-cvdocmds [{1} | {0}]]
[-cvkeepcmdsinfullscreen [{1} | {0}]] [-cvcmdbg [color]] [-cvcmdfg [color]] [-skleft [keycode]] [-
skright [keycode]]

Description

The lcdui.settings command returns information about the phone the program is running on.

• -color: is this a color display? 1 or 0

• -alphalevels: number of alpha levels

• -alertimagewidth: width in pixels of the alert image

• -alertimageheight: height in pixels of the alert image

• -listimagewidth: width in pixels of the list image

• -listimageheight: height in pixels of the list image

• -choiceimagewidth: width in pixels of the choice image

• -choiceimageheight: height in pixels of the choice image

• -bg: background color

• -fg: foreground color

• -hilightbg: background hilight color

• -hilightfg: foreground hilight color

• -border: border color

• -hilightborder: border hilight color

• -borderstyle: border style - can be either DOTTED (1) or SOLID (0)

• -hilightborderstyle: border highlight style - can be either DOTTED (1) or SOLID (0)

• -cvfullscreen: Get/set whether full screen mode is allowed for the canvas widget.

This setting enables the use of fullscreen mode for a canvas. The lcdui Canvas class behaves different in
fullscreen mode: it does not show commands. Full screen mode is enabled by default, so a canvas (being
a subclass of lcdui.game.GameCanvas) can be created in fullscreen mode. On some devices the
behavior in fullscreen mode is broken, so this setting gives you the chance to avoid the fullscreen usage
without changing the application itself but only the application startup that might detect certain phone
features and turn off fullscreen mode generally for all canvases.

Hecl - The Mobile Scripting Language

179

Devices being picky in fullscreen mode include most of the BlackBerry devices since handling of
commands is totally different from other Java ME devices. Most BlackBerry devices use the dial to
select between command entries.

• -cvdocmds: Get/set whether to display commands in the full screen canvas or not.

Enables the display of commands by the hecl canvas. When it fullscreen mode, canvases do not show
commands. You may want a canvas in fullscreen mode and wish to use commands as usual, so the
canvas in hecl provides a fallback mechanism to show commands attached to the canvas by itself.

• -cvkeepcmdsinfullscreen: Get/set whether to add commands in full screen mode.

Enables treatment of commands attached to a canvas even in fullscreen mode. This behavior is
implemented in the Hecl midp layer and may be slidely different from the regular phone behavior for
commands attached to other lcdui interafce elements like a form or list.The setting has an effect only
for a canvas in fullscreen mode and enables command handling similar to the command handling of
non-fullscreen canvases.

• -cvcmdbg: Get/set color value for command background color in canvas, when Hecl's full screen
Canvas command handling is enabled (see above).

• -cvcmdfg: Get/set color value for command foreground color in canvas, when Hecl's full screen
Canvas command handling is enabled (see above).

• -skleft: Get/set the numeric keycode for the left soft key.

The values are used to identify the keys triggering command handling for a canvas. The standard settings
for these values are the usual keycode -6 (left) and -7 (right) that work on most Java ME devices. There
are some well-known differences that are detected by the Hecl midp package:

Siemens S65 and friends: -1 (left), -4 (right) - detected via existence of class
com.siemens.mp.lcdui.Image BlackBerry: 524288=0x80000 (left), 0x1b0000 (right) -
detected via existence of class net.rim.device.api.system.Application

Application developers can tailor these settings for specific device models in their own applications.

• -skright: Get/set the numeric keycode for the right soft key (see explanation above).

Example

set form [lcdui.form -title "Settings Demo" -commandaction menu1sel]
$form setcurrent

foreach s {"-color"
 "-alphalevels"
 "-alertimagewidth"
 "-alertimageheight"
 "-listimagewidth"
 "-listimageheight"
 "-choiceimagewidth"
 "-choiceimageheight"
 "-bg"
 "-fg"
 "-hilightbg"

Hecl - The Mobile Scripting Language

180

 "-hilightfg"
 "-border"
 "-hilightborder"
 "-borderstyle"
 "-hilightborderstyle"
} {
 $form append [lcdui.stringitem -label "[strtrim $s -]:" -text \
 [lcdui.settings cget $s]]
}

Live example: http://www.heclbuilder.com/scripts/show/152

http://www.heclbuilder.com/scripts/show/152

Hecl - The Mobile Scripting Language

181

Name
lcdui.spacer — Creates a spacer element in a form.

Synopsis
lcdui.spacer {-minwidth minimum width} {-minheight minimum height}

Note

Image items also utilize the common "item" options, described here: lcdui item options

Description

The lcdui.spacer command creates a spacer to separate form elements. Via the -minwidth and -
minheight options, you can specify the minimum width and height. For an in-depth look at the Java
code that this command is based on, see: javax.microedition.lcdui.Spacer [http://java.sun.com/javame/
reference/apis/jsr118/javax/microedition/lcdui/Spacer.html]

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Spacer.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Spacer.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Spacer.html

Hecl - The Mobile Scripting Language

182

Name
lcdui.stringitem — Creates a string item that can be added to a form.

Synopsis
lcdui.stringitem {-label label} {-text text}

$stringitemcmd [cget { {-appearance} | {-text} | {-font} }] [configure { {-appearance { {plain} |
{button} | {hyperlink} } } | {-text text} | {-font font} }]

Note

String items also utilize the common "item" options, described here: lcdui item options

Description

The lcdui.stringitem command creates a string item (label + text) that can be attached to a form. Normally,
the label is bold, and the text is in the default font. For an in-depth look at the Java code that this command
is based on, see: javax.microedition.lcdui.StringItem [http://java.sun.com/javame/reference/apis/jsr118/
javax/microedition/lcdui/StringItem.html]

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/StringItem.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/StringItem.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/StringItem.html

Hecl - The Mobile Scripting Language

183

Name
lcdui.textbox — Creates a text box for editing larger blocks of text.

Synopsis
lcdui.textbox {-title title} {-text text} {-maxlen maxlen} {-type { {any} | {emailaddr} |
{numeric} | {phonenumber} | {decimal} } }

$textboxcmd [cget { {-type} | {-text} | {-maxlen} | {-password} | {-uneditable} | {-sensitive} | {-
non_predictive} | {-initial_caps_word} | {-caretposition} }] [configure { {-type type} | {-text text} |
{-maxlen maxlen} | {-password { {1} | {0} } } | {-uneditable { {1} | {0} } } | {-sensitive { {1} | {0} } }
| {-non_predictive { {1} | {0} } } | {-initial_caps_word { {1} | {0} } } }]

Description

The lcdui.textbox command creates a full-screen text editing widget that can be used for editing longer,
multi-line chunks of text. For an in-depth look at the Java code that this command is based on, see:
javax.microedition.lcdui.TextBox [http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/
lcdui/TextBox.html]

There are several options governing the functionality of this widget. Note that more than one constraint
may be selected at a time:

• -password: If 1, obscure the data as it is entered.

• -uneditable: If 1, the user is not allowed to edit the displayed text.

• -sensitive: If 1, "indicates that the text entered is sensitive data that the implementation must
never store into a dictionary or table for use in predictive, auto-completing, or other accelerated input
schemes."

• -non_predictive: Don't use the local text-completion system if this option is set.

• -initial_caps_word: The initial letter of each word should be capitalized if this option is set.

• -initial_caps_sentence: The initial letter of each sentence should be capitalized if this option
is set.

Example

set evalcmd [lcdui.command -label Evaluate -longlabel Evaluate]
set textbox [lcdui.textbox -text {[lcdui.alert -text "hi!"] setcurrent} \
 -commandaction runCode]
$textbox setcurrent
$textbox addcommand $evalcmd

proc runCode {cmd txtbox} {
 eval [$txtbox cget -text]
}

Live example: http://www.heclbuilder.com/scripts/show/153

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html
http://www.heclbuilder.com/scripts/show/153

Hecl - The Mobile Scripting Language

184

Name
lcdui.textfield — Creates a small text editing widget that can be attached to a form.

Synopsis
lcdui.textfield {-label label} {-text text} {-maxlen maxlen} {-type { {any} | {emailaddr}
| {numeric} | {phonenumber} | {decimal} } }

$textfieldcmd [cget { {-type} | {-text} | {-maxlen} | {-password} | {-uneditable} | {-sensitive} | {-
non_predictive} | {-initial_caps_word} | {-caretposition} }] [configure { {-type type} | {-text text} |
{-maxlen maxlen} | {-password { {1} | {0} } } | {-uneditable { {1} | {0} } } | {-sensitive { {1} | {0} } }
| {-non_predictive { {1} | {0} } } | {-initial_caps_word { {1} | {0} } } }]

Description

The lcdui.textfield command creates a one-line text editing widget that can be attached to a form. For
an in-depth look at the Java code that this command is based on, see: javax.microedition.lcdui.TextBox
[http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html]

Example

set evalcmd [lcdui.command -label Evaluate -longlabel Evaluate]
set textfield [lcdui.textfield -text {[lcdui.alert -text "hi!"] setcurrent}]
set form [lcdui.form -title "Text Field Example" -commandaction \
 [list runCode $textfield]]
$form append $textfield
$form setcurrent
$form addcommand $evalcmd

proc runCode {txtfld cmd frm} {
 eval [$txtfld cget -text]
}

Live example: http://www.heclbuilder.com/scripts/show/154

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html
http://www.heclbuilder.com/scripts/show/154

Hecl - The Mobile Scripting Language

185

Name
lcdui.ticker — Creates a ticker that scrolls horizontally.

Synopsis
lcdui.ticker {-text text}

Description

The lcdui.ticker command creates a ticker that runs horizontally across the screen. For an in-depth look at
the Java code that this command is based on, see: javax.microedition.lcdui.TextBox [http://java.sun.com/
javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html]

Example

set ticker [lcdui.ticker -text "The time is [clock format [clock time]]"]
set form [lcdui.form -title "Ticker Example" -ticker $ticker]
$form setcurrent

proc updateTicker {ticker} {
 $ticker configure -text "The time is [clock format [clock time]]"
 after 1000 [list updateTicker $ticker]
}

after 1000 [list updateTicker $ticker]

Live example: http://www.heclbuilder.com/scripts/show/155

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/TextBox.html
http://www.heclbuilder.com/scripts/show/155

Hecl - The Mobile Scripting Language

186

Name
lcdui item options — common options for lcdui.choicegroup, lcdui.date, lcdui.gauge, lcdui.imageitem,
lcdui.spacer, and lcdui.stringitem

Common lcdui item options

The lcdui "item" elements have a number of options in common, which are described here.

Many of these options are layout options, and correspond to what is described here: http://java.sun.com/
javame/reference/apis/jsr118/javax/microedition/lcdui/Form.html#layout

lcdui item configuration options

These options may be set as follows, or as options at the time the item is created.

$itemcmd {configure} {-optname} {optvalue}

• -label text: the item's label

• -anchor position: One of the following positions. For more information, see http://java.sun.com/
javame/reference/apis/jsr118/javax/microedition/lcdui/Graphics.html

• n: top/center

• ne: top/right

• e: right/vertically centered

• se: bottom/right

• s: bottom/center

• sw: bottom/left

• w: left/vertically centered

• nw: top/left

• center: horizontally and vertically centered

• default: top/left

• bl: left/baseline

• bc: centered/baseline

• br: right/baseline

• -shrink 1 | 0 Indicate that this item's width may be reduced to its minimum width.

• -expand 1 | 0 Indicate that this item's width may be increased to fill available space. width.

• -vexpand 1 | 0 Indicate that this item's height may be increased to fill available space. width.

• -newlinebefore 1 | 0 Indicate that the next item (if any) in the container should be placed on
a new line or row.

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Form.html#layout
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Form.html#layout
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Graphics.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/lcdui/Graphics.html

Hecl - The Mobile Scripting Language

187

• -newlineafter 1 | 0 Indicate that this item should be placed at the beginning of a new line or row.

• -layout2 1 | 0 A layout directive indicating that new MIDP 2.0 layout rules are in effect for
this item.

• -preferredwidth width Preferred width for the item.

• -preferredheight height Preferred height for the item.

• -defaultcommand command If this item is clicked on, the default command to call. command
refers to a command object, and not a Hecl proc or command.

• -commandaction command The Hecl command to call when a command is dispatched.

read-only configuration information

All of the above attributes may be read as well as written. There are several more attributes that are "read
only". They can be obtained like so:

$itemcmd {cget} {-optname} {optvalue}

• -minwidth : Returns the minimum width for this item.

• -minheight : Returns the minimum height for this item.

Hecl - The Mobile Scripting Language

188

Name
midlet.exit — Exit from the Midetl

Synopsis
midlet.exit

Description

Exit from the current Midlet by calling notifyDestroyed

Hecl - The Mobile Scripting Language

189

Name
midlet.pause — Pause the current midlet

Synopsis
midlet.pause

Description

Pause the current midlet by calling the notifyPaused method.

Hecl - The Mobile Scripting Language

190

Name
midlet.resume — Resume execution of the current midlet

Synopsis
midlet.resume

Description

Attempts to resume execution of the midlet by calling the resumeRequest method.

Hecl - The Mobile Scripting Language

191

Name
midlet.onpause — Hook to call when midlet execution is paused

Synopsis
midlet.onpause

Description

If this command is defined in the interpreter, it is called before the midlet is paused.

Hecl - The Mobile Scripting Language

192

Name
midlet.onresume — Hook to call when midlet execution is resumed

Synopsis
midlet.onresume

Description

If this command is defined in the interpreter, it is called when execution of the midlet is resumed.

Hecl - The Mobile Scripting Language

193

Name
midlet.checkpermissions — Query permission information

Synopsis
midlet.checkpermissions {permission_name}

Description

This command returns information about whether a given permission has been granted to the midlet.
Quoting from the Java documentation:

Get the status of the specified permission. If no API on the device defines the specific
permission requested then it must be reported as denied. If the status of the permission
is not known because it might require a user interaction then it should be reported as
unknown.

The command returns 0 if the permission is denied; 1 if the permission is allowed, and -1 if the status
is unknown

Example

midlet.checkpermissions "javax.microedition.io.Connector.file.read"

Hecl - The Mobile Scripting Language

194

Name
midlet.getappproperty — Get application properties

Synopsis
midlet.getappproperty {propertyname}

Description

Lets the midlet retrieve application properties, as defined in the .jad file.

See also: system.getproperty

Hecl - The Mobile Scripting Language

195

Name
midlet.platformrequest — Perform platform-specific actions

Synopsis
midlet.platformrequest {url}

Description

From the Javadocs:

Requests that the device handle (for example, display or install) the indicated URL.

If the platform has the appropriate capabilities and resources available, it SHOULD bring
the appropriate application to the foreground and let the user interact with the content,
while keeping the MIDlet suite running in the background. If the platform does not have
appropriate capabilities or resources available, it MAY wait to handle the URL request
until after the MIDlet suite exits. In this case, when the requesting MIDlet suite exits, the
platform MUST then bring the appropriate application (if one exists) to the foreground
to let the user interact with the content.

In other words, depending on the device, you can launch applications with midlet.platformrequest. For
example:

Make a phone call
midlet.platformrequest "tel:+393488866859"
Start the sms sending application
midlet.platformrequest "sms:+393488866859"
Open a web page
midlet.platformrequest "http://www.hecl.org"
Install the jad/jar
midlet.platformrequest "http://www.hecl.org/jars/cldc1.1-midp2.0/Hecl.jad"

Note

There is not much standard about this command. It may or may not support different url types
on different phones. Making phone calls with "tel:" URL's should always work. Also, keep in
mind that on some devices, launching an external application may terminate the currently running
midlet.

Hecl - The Mobile Scripting Language

196

Name
midlet.resourceasstring — Get a resource file as a string

Synopsis
midlet.resourceasstring {resourcename}

Description

Given a resource resourcename, returns it as a string. This could be used, for instance, to load additional
Hecl files.

Example

eval [midlet.resourceasstring "./more_commands.hcl"]

Hecl - The Mobile Scripting Language

197

Name
midlet.flashbacklight — Flash the device's backlight

Synopsis
midlet.vibrate {milliseconds}

Description

Flashes the device's backlight for N milliseconds. Returns 1 if the light can be controlled by the application,
and the display is in the foreground; otherwise, 0.

Hecl - The Mobile Scripting Language

198

Name
midlet.vibrate — Vibrate the device

Synopsis
midlet.vibrate {milliseconds}

Description

Activates the device's vibrator for N milliseconds. Returns 1 if the vibrator can be controlled by the
application and the display is in the foreground; otherwise 0.

Hacking Hecl's Java ME code
Since Java ME comes in several flavors that Hecl can be compiled for, it's necessary to understand what
Hecl does, and how it does it.

JavaME has two layers that are of interest to us, "CLDC" and "MIDP". CLDC is available in 1.0 and 1.1
configurations, whereas MIDP comes in 1.0 and 2.0 configurations. The most common configurations are
CLDC 1.0 and MIDP 1.0, CLDC 1.0 and MIDP 2.0, and CLDC 1.1 with MIDP 2.0. Here are the Wikipedia
entries describing CLDC [http://en.wikipedia.org/wiki/Connected_Limited_Device_Configuration] and
MIDP [http://en.wikipedia.org/wiki/MIDP].

Hecl tries to match code to system resources: in other words, the code in the midp10/ and midp10gui
(MIDP 1.0) directories is smaller, simpler, and has fewer features than the code in midp20 and
midp20gui (MIDP 2.0), reflecting the fact that many 1.0 devices only allow very small jar files
("midlets").

For MIDP 1.0, the midp10gui directory contains the GUICmds.java, which has most of the
functionality that maps J2ME functionality to Hecl and back. The midp10/Hecl.java file contains
the code that starts up Hecl on the cell phone. For MIDP 2.0, the midp20gui directory contains the GUI
commands, and midp20/Hecl.java is where the application is launched from on the phone.

In order to be able to deal with all these different versions, Hecl is more or less forced to utilize a
Java preprocessor, which explains all the ifdef's in the code. The various symbols are defined in the
settings.xml file.

To compile different combinations of things, Hecl makes a couple of property files available that are used
like so:

 ant -propertyfile ./cldc10midp10.properties midlet

Which compiles the CLDC 1.0 / MIDP 1.0 version of Hecl and places the jar in the jars/cldc1.0-
midp1.0/ directory, or:

 ant -propertyfile ./cldc11midp20.properties midlet

Which compiles the CLDC 1.1 / MIDP 2.0 version, and places the jar in the jars/cldc1.1-midp2.0/
directory.

http://en.wikipedia.org/wiki/Connected_Limited_Device_Configuration
http://en.wikipedia.org/wiki/Connected_Limited_Device_Configuration
http://en.wikipedia.org/wiki/MIDP
http://en.wikipedia.org/wiki/MIDP

Hecl - The Mobile Scripting Language

199

Hecl and BlackBerry
The BlackBerry platform allows you to utilize Java ME code, which is what we do to make Hecl run on that
platform. This means that almost all of the Java ME commands are available, plus additional commands
specific to the BlackBerry environment.

BlackBerry Commands

Hecl - The Mobile Scripting Language

200

Name
browser.open — Launches the BlackBerry browser

Synopsis
browser.open {url} []

Description

The browser.open command launches the BlackBerry browser. It does not block while the browser
remains open, so the execution of the Hecl script continues.

Hecl - The Mobile Scripting Language

201

Name
device.systemversion — Returns a string with the system version information

Synopsis
device.systemversion

Description

Returns a string containing the system version of the device.

Note

This always returns an empty string on the emulator

Hecl - The Mobile Scripting Language

202

Name
invoke.call — Makes a phone call using the built-in dialer

Synopsis
invoke.call {phone_number}

Description

Makes a call to the specified phone number, using the built in "dial" application.

Hecl - The Mobile Scripting Language

203

Name
invoke.calculator — Opens the built in calculator application

Synopsis
invoke.calculator

Description

Launches the calculator application.

Hecl - The Mobile Scripting Language

204

Name
invoke.camera — Starts the camera application

Synopsis
invoke.camera

Description

Launches the camera application.

Hecl - The Mobile Scripting Language

205

Name
invoke.video — Starts the video application

Synopsis
invoke.video

Description

Launches the video application.

Hecl - The Mobile Scripting Language

206

Name
servicebook.records — Retrieves connection information about various connection types

Synopsis
servicebook.records

Description

This call returns a list of all "service records". Each record is a hash with the following fields defined.
For their meanings, please refer to this link: http://www.blackberry.com/developers/docs/4.7.0api/net/rim/
device/api/servicebook/ServiceRecord.html

APN ApplicationData BBRHosts BBRHosts BBRPorts BBRPorts CAAddress
CAPort CARealm CID UID CidHash CompressionMode DataSourceId Description
DisabledState EncryptionMode HomeAddress Id KeyHashForService LastUpdated
Name NameHash NetworkAddress NetworkType Source Type Uid UidHash
UserId isDirty isDisabled isEncrypted isInvisible isRecordProtected
isRestoredFromBackup isRestoreDisabled isRestoreEnabled isSecureService
isValid isWeakSecureService

Hecl and Android
As of mid-2008, Hecl runs on Google's Android [http://code.google.com/android/] platform, although it's
not yet a 'mature' port. That's ok right now, though, because Android isn't production ready yet, either.

Due to a different GUI model, a very extensive API, and a much more complete implementation of Java
1 Hecl on Android takes a different approach: the Android version of Hecl includes a java command, and
introspection capabilities in order to be able to dynamically create Hecl commands that call out to native
Java calls.

Android Hecl Quick Start
Developing for Android Hecl is quite similar to Java ME development, with the same cycle of editing a
script, creating an application bundle, and testing it in an emulator.

1. To work with Android, of course the first thing you need to do is to get the SDK from Google: http://
code.google.com/android/download.html. On my system, I installed it in here: /opt/android-
sdk/.

2. Next, edit android/android.properties to point to the SDK, and the tools it needs to work
(usually the tools directory within the SDK directory).

3. As with Java ME Hecl, you need a script file to work with. Here's a "hello world":

set context [activity]
set layout [linearlayout -new $context]
$layout setorientation VERTICAL
set layoutparams [linearlayoutparams -new {FILL_PARENT WRAP_CONTENT}]

set tv [textview -new $context -text {Hello World} \

1 Android doesn't actually run Java, it just compiles code written in Java into bytecodes for the Dalvik engine.

http://www.blackberry.com/developers/docs/4.7.0api/net/rim/device/api/servicebook/ServiceRecord.html
http://www.blackberry.com/developers/docs/4.7.0api/net/rim/device/api/servicebook/ServiceRecord.html
http://code.google.com/android/
http://code.google.com/android/
http://code.google.com/android/download.html
http://code.google.com/android/download.html

Hecl - The Mobile Scripting Language

207

 -layoutparams $layoutparams]

$layout addview $tv
[activity] setcontentview $layout

To see more code, have a look at android/res/raw/script.hcl, which has examples of
many different widgets.

4. You won't need it right away, but you might as well start the emulator:

/opt/android-sdk/tools/emulator -avd your_avd

Note

You need to create an "AVD" before launching the emulator. This is documented here: http://
developer.android.com/guide/developing/tools/emulator.html#avds

5. Now we create the new Hello.apk file.

java -jar ./hecl/jars/AndroidBuilder.jar -android \
 /opt/android-sdk/platforms/android-1.5/ -class Hello \
 -label Hello -package hello.world \
 -script hello.hcl

Note

It's important to point out that the directory used with the -android option is a subdirectory
of the SDK: /opt/android-sdk/platforms/android-1.5/, rather than the top
level.

The command line options are as follows:

-android: The location of the Android SDK.
-class: The class name to utilize for the new .apk.
-label: The user-visible name of the package.
-package: The Java package to use. You can pretty much use any name you like, it doesn't matter
much.
-script: The location of the script you want to use in the new .apk.

6. We now have a Hecl.apk file. We need to sign it with the debug key:

keytool -genkeypair -keystore debug.keystore \
 -keypass android -alias androiddebugkey -storepass android \
 -dname "CN=Android Debug,O=Android,C=US"

jarsigner -keystore debug.keystore -keypass android \
 -storepass android -verbose Hello.apk androiddebugkey

7. At this piont, we can send the signed file, Hello.apk to the emulator:

/opt/android-sdk_m5-rc15_linux-x86/tools/adb install Hello.apk

http://developer.android.com/guide/developing/tools/emulator.html#avds
http://developer.android.com/guide/developing/tools/emulator.html#avds

